1. Magnetic anisotropy energy = f(T)
2. Anisotropic magnetic moment ≠ f(T)

Characteristic energies of metallic ferromagnets

- binding energy: 1 - 10 eV/atom
- exchange energy: 10 - 10³ meV/atom
- cubic MAE (Ni): 0.2 µeV/atom
- uniaxial MAE (Co): 70 µeV/atom

\[
\text{MAE} \approx 2 \cdot 10^4 \text{erg/cm}^3 \approx 0.2 \mu\text{eV/atom}
\]

\[
\Delta \mu_L \approx 0.1 \text{ G}
\]

Lecture 2: Magnetic Anisotropy Energy (MAE)
There are only 2 origins for MAE: 1) dipol-dipol interaction $\sim (\mu_1 \cdot \vec{r})(\mu_2 \cdot \vec{r})$ and 2) spin-orbit coupling \mathbf{LS} (intrinsic K or ΔE_{band}).

O. Hjortstam, K. B. et al. PRB 55, 15026 (’97)

R. Wu et al. JMMM 170, 103 (’97)

Structural changes by ≈ 0.05 Å increase MAE by 2-3 orders of magnitude ($\sim 0.2 \rightarrow 100 \mu eV/\text{atom}$)

K. Baberschke FU Berlin „Lectures on magnetism“ #2, Fudan Univ. Shanghai, Oct. 2005
Body-Centered-Cubic Ni and Its Magnetic Properties

C. S. Tian, D. Qian, D. Wu, R. H. He, Y. Z. Wu, W. X. Tang, L. F. Yin, Y. S. Shi, G. S. Dong, and X. F. Jin

Surface Physics Laboratory, Fudan University, Shanghai 200433, China

1National Synchrotron Radiation Laboratory, Beijing 310027, China
2Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor Michigan 48109, USA
3Laboratorio Nazionale TASC-INFM, Strada Statale 14, km 163.5 Basovizza, I-34012 Trieste, Italy
4Department of Physics, University of California, Berkeley, California 94720, USA
5Department of Physics, University of Utah, Salt Lake City, Utah 84112, USA

(Received 18 November 2004; published 7 April 2005)

The body-centered-cubic (bcc) phase of Ni, which does not exist in nature, has been achieved as a thin film on GaAs(001) at 170 K via molecular beam epitaxy. The bcc Ni is ferromagnetic with a Curie temperature of 456 K and possesses a magnetic moment of $0.52 \pm 0.08 \mu_B$/atom. The cubic magneto-crystalline anisotropy of bcc Ni is determined to be $+4.0 \times 10^6$ ergs \cdot cm$^{-3}$, as opposed to -5.7×10^4 ergs \cdot cm$^{-3}$ for the naturally occurring face-centered-cubic (fcc) Ni. This sharp contrast in the magnetic anisotropy is attributed to the different electronic band structures between bcc Ni and fcc Ni, which are determined using angle-resolved photoemission with synchrotron radiation.
Free energy density of MAE, K

(intrinsic, after subtraction of $2\pi M^2$)

tetragonal [e.g. Ni, Co, Fe (001) / Cu (001)]:

\[
E_{tet} = -K_2 \alpha_z^2 - \frac{1}{2} K_4 \alpha_z^4 - \frac{1}{2} K_4 \alpha_x^4 + \alpha_y^4 + ... \quad (B. Heinrich et al.)
\]

\[
= - K_2 \cos^2 \theta - \frac{1}{2} K_4 \cos^4 \theta - \frac{1}{2} K_4 \frac{3}{4} \cos^4 \phi \sin^4 \theta + ... \quad (Bab et al.)
\]

\[
= (K_2 + K_4) \sin^2 \theta - \frac{1}{2} (K_4 + \frac{3}{4} K_4) \sin^4 \theta - \frac{1}{8} K_4 \cos^4 \phi \sin^4 \theta + ... \quad (traditional)
\]

hexagonal [e.g. Ni (111), Gd (0001) / W (110)]:

\[
E_{hex} = k_2 \sin^2 \theta + \frac{1}{2} k_2 \cos^2 \phi \sin^2 \theta + k_4 \sin^4 \theta + k_6 \sin^6 \theta + k_6 \cos^4 \phi \sin^4 \theta + ...
\]

\[
K = k_2 Y_2^0 + k_4 m Y_4^m + ... \quad \text{Legendre polyn.} \quad (B. Coqblin)
\]

each K_i has a „volume“ and „surface“ contribution

\[
K_i = K_i^v + 2K_i^s/d
\]

K. Baberschke FU Berlin „Lectures on magnetism“ #2, Fudan Univ. Shanghai, Oct. 2005
Spin reorientation in bulk Gd

Gd is not isotropic, it has $K_2, K_4, K_6 \neq 0$

Note also finite MAE above T_C
Spin reorientation in bulk Ni und Co

At the extremal value of K_2 a reorientation and second maximum in χ appears.

SRT for hcp Co

$$\sin \theta = \left(\frac{K_2}{2K_4} \right)^{1/2}$$

Fig. 6. The variation of the initial susceptibility with temperature in nickel.

Fig. 7. Temperature dependence of magnetocrystalline anisotropy constants of Ni. (a) K_1, (b) K_2, K_3, K_4, and K_5. Accuracy of data is considerably reduced near T_c: dashed lines in the insert (68 A1) and (76 A1). Solid line is to guide the eye through confidence limits (76 A1).

Fig. 5. Temperature dependence of the angle θ between the direction of spontaneous magnetization and the c axis of a single crystal of hcp Co [61 B5]. Points: data. Curve: calculated from $\sin \theta = \left(-K_2/2K_1 \right)^{1/2}$.

LB III, 19a, p.45

K. Baberschke FU Berlin

„Lectures on magnetism“ #2, Fudan Univ. Shanghai, Oct. 2005
Ferromagnetic resonance on Fe$_n$/V$_m$(001) superlattices

A.N. Anisimov et al.

\[
\mu_L / \mu_S = \frac{g-2}{2} \quad \text{(Kittel'49)}
\]

in solids g and μ are tensors

<table>
<thead>
<tr>
<th>bcc (001) Fe$_n$/V$_m$ superlattice</th>
<th>bcc Fe-bulk</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g_{</td>
<td></td>
</tr>
<tr>
<td>2.264</td>
<td>2.268</td>
</tr>
<tr>
<td>2.09</td>
<td>2.09</td>
</tr>
</tbody>
</table>
For thin films the Curie temperature can be manipulated

\[K_i = K_i^v + 2 \frac{K_i^s}{d} \]

\[t = \frac{T}{T_C(d)} \]

P. Poulopoulos and K. B.
Free energy density of MAE, K

(intrinsic, after substraction of $2\pi M^2$)

tetragonal [e.g. Ni, Co, Fe (001) / Cu (001)]:

$$E_{tet} = - K_2 \alpha_z^2 - \frac{1}{2} K_{4\perp} \alpha_z^4 - \frac{1}{2} K_4 || (\alpha_x^4 + \alpha_y^4) + ... \quad (B. Heinrich et al.)$$

$$= - K_2 \cos^2 \theta - \frac{1}{2} K_{4\perp} \cos^4 \theta - \frac{1}{2} K_4 || \frac{1}{4} (3 + \cos 4\varphi) \sin^4 \theta + ... \quad (Bab et al.)$$

$$= (K_2 + K_{4\perp}) \sin^2 \theta - \frac{1}{2} (K_{4\perp} + \frac{3}{4} K_4 ||) \sin^4 \theta - \frac{1}{8} K_4 || \cos 4\varphi \sin^4 \theta + ...$$

$$= K_2 \sin^2 \theta + K_{4\perp} \sin^4 \theta + K_4 || \cos 4\varphi \sin^4 \theta + ... \quad (traditional)$$

hexagonal [e.g. Ni (111), Gd (0001) / W (110)]:

$$E_{hex} = k_2 \sin^2 \theta + \frac{1}{2} k_2 || \cos 2\varphi \sin^2 \theta + k_4 \sin^4 \theta + k_{6\perp} \sin^6 \theta + k_6 || \cos 6\varphi \sin^6 \theta + ...$$

$$K = k_2 Y_2^0 + k_{4m} Y_4^m + ... \quad Legendre polyn. \quad (B. Coqblin)$$

each K$_i$ has a „volume“ and „surface“ contribution

$$K_i = K_i^V + 2K_i^s/d$$
2b *ab initio* calculations

\[g_{II} - g_{II} = g_{e} \lambda (\Delta_{II} - \Delta_{II}) \]

anisotropic \(\mu_{L} \) \leftrightarrow MAE

\[\text{MAE} \propto \frac{\zeta_{LS}}{4\mu_{B}} \Delta \mu_{L} \]

O. Hjortstam, K. B. et al. PRB 55, 15026 ('97)
The surface and interface MAE are certainly large (L. Néel, 1954) but count only for one layer each. The inner part (volume) of a nanostructure will overcome this, because they count for n-2 layers.

K. Baberschke FU Berlin „Lectures on magnetism“ #2, Fudan Univ. Shanghai, Oct. 2005
A. Berghaus, M. Farle, Yi Li, K. Baberschke

Absolute determ. of the mag. anisotropy of ultrathin Gd and Ni/W(110).

San Luis Potosi, Mexico, Proc. in Physics 50, 61 (1989)
M. Farle et al., PRB 55, 3708 (1997)

Only with $K_4 \neq 0$ a continues SRT is possible!

Do not use $K_{\text{eff}} = 2\pi M^2 - K_i$ … because $f(T)$ and $f'(T)$ are different.
Use the ratio $K_i / 2\pi M^2 \Rightarrow f(T) / f'(T)$
Oxygen surfactant assisted growth: a new procedure to prepare ferromagnetic ultrathin films

- Oxygen acts as surfactant for Fe, Co and Ni films on Cu(100)
- Change of magnetic anisotropy by surfactant
- Induced magnetic moment of surfactant
Improved growth by oxygen surfactant

O($\sqrt{2} \times 2\sqrt{2}$)R45°/Cu(100)
missing row reconstruction
c(2 × 2)O/Ni/Cu(100)

From AES ⇒ oxygen floats on top of Ni film

Local structure: Surface EXAFS Ni on O/Cu(100)

\[R_{nn} = (1.85 \pm 0.03) \text{ Å} \]
\[h = 0.41 \text{ Å} \]

Comparison to theory (T.S. Rahman):
\[R_{nn} = 1.87 \text{ Å} \]
\[h = 0.44 \text{ Å} \]

Electronic structure from X-ray absorption spectroscopy

Ni L$_{2,3}$-edge

O K-edge

NEXAFS \Rightarrow no bulklike NiO is formed
\[
F \sim \left(2\pi M^2 - K_{2\perp} \right) \cos^2 \theta
\]

\[
K = K^V + \frac{K^{S1} + K^{S2}}{d}
\]

<table>
<thead>
<tr>
<th>Interface</th>
<th>(K_s) ((\mu\text{eV/atom}))</th>
<th>(d_c) (ML)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni/vacuum</td>
<td>-107</td>
<td>10.8</td>
</tr>
<tr>
<td>Ni/Cu</td>
<td>-59</td>
<td>7.6</td>
</tr>
<tr>
<td>Ni/CO</td>
<td>-81 (van Dijken et al.)</td>
<td>7.3</td>
</tr>
<tr>
<td>Ni/H(_2)</td>
<td>-70 (van Dijken et al.)</td>
<td>6.8</td>
</tr>
<tr>
<td>Ni/O (surfactant)</td>
<td>-17</td>
<td>4.9</td>
</tr>
</tbody>
</table>

Experiment

- Ni/Cu(001)
- 2\(\pi M^2\) vs. \(1/d\) (ML)
- Ni vacuum, Ni + Cu cap, Ni + O surfactant

Theory

Results of ab initio calculations

Density of states

- DOS shows that topmost Ni moment is basically unchanged
- O-induced surface state seen in the vicinity of X-point is responsible for change in MAE
- theory reveals induced moment in surfactant oxygen

Induced magnetism in oxygen: Ni on O/Cu(100)

Oxygen K-edge XMCD → orbital moment μ_L

BESSY: UE56/2-PGM2

- $2p_{xy}$, $4sp$
- $2p_{3d}$

15 ML Ni on O/Cu(100) 300K

Theory: Ruqian Wu (UC Irvine):

- Induced moments in oxygen:
 - $\mu_S = 0.053 \mu_B$
 - $\mu_L = 0.0021 \mu_B$
Induced magnetism in oxygen: Co and Fe films

Co on O/Cu(100)

Fe on O/Cu(100)
Conclusion

- spin reorientation transition changes dramatically with surfactant
 → surface anisotropy is strongly reduced in magnitude
- Fe, Co and Ni induce magnetic moment in surfactant
- fair agreement with ab initio calculations