

Magnetic anisotropy and interlayer exchange coupling in ultrathin ferromagnets: experiment versus theory

Klaus Baberschke

Institut für Experimentalphysik Freie Universität Berlin Arnimallee 14 D-14195 Berlin-Dahlem Germany

- 1. Prologue
- 2. Magnetic Anisotropy Energy
- **3.** Interlayer Exchange Coupling and f (T)
- 4. Summary

1. Prologue

Is this of interest for the theory?

Freie Universität Berlin

Freie Universität Berlin

281. WE-Heraeus-Seminar

"Spin-Orbit Interaction and Local Structure in Magnetic Systems with Reduced Dimensions" June 2002 in Wandlitz

Freie Universität Berlin

Freie Universität Berlin

2. Magnetic Anisotropy Energy

Infinite sized Ni x-tal no surface effects

Structural changes by ≈ 0.05 Å increase **MAE** by 2-3 orders of magnitude ($\sim 0.2 \rightarrow 100 \mu eV/atom$)

see also: R. Wu et al. JMMM 170, 103 ('97)

"volume", "surface" and "interface" MAE

Freie Universität Berlin

"volume", "surface" and "interface" MAE

The surface and interface **MAE** are certainly large (L. Néel, 1954) but count only for one layer each. The inner part (volume) of a nanostructure will overcome this, because they count for in n-2 layers.

Freie Universität Berlin

In a proper analysis, taking $T/T_C(d)$ in consideration, we always find a linear K=K_V+2K_S/d dependence. A departure from this "Néel argument" indicates changes in the x-tal structure

Freie Universität Berlin

Manipulation of surface MAE, K_S by adsorbed molecules, metal cap and surfactant growth

Interface	K_s (µeV/atom)	d_{c} (ML)
Ni/vacuum	-1 07	10.8
Ni/Cu	-59	7.6
Ni/CO (van Dijken e	et al.) -81	7.3
Ni/H ₂ (van Dijken et	t al.) -70	6.8
Ni/O (surfactan	nt) -17	4.9

Changes of K_S shift the spin reorientation transition d_C

J. Lindner et al. Surf. Sci. Lett. 523, L65 (2003)

K. B. *Handbook of Magnetism and Advanced Magnetic Materials*, Vol. 3 Ed. Kronmüller and Parkin, 2007 John Wiley & Sons, Ltd.

Results of ab initio calculations

R. Q. Wu & coworkers

MAE along $\Gamma \overline{X}$ axis

for details see Phys. Rev. Lett. 92, 147202 (2004)

Freie Universität Berlin

3. Interlayer Exchange Coupling and f (T)

TABLE I.	Best-fit structural	data for the	nickel films	of different	thickness and the clean
----------	---------------------	--------------	--------------	--------------	-------------------------

Parameter	0 ML	1 ML	2 ML	3 ML	4 ML	5 ML
d_{12} (Å)	$1.755^{+0.011}_{-0.007}$	$1.720^{+0.014}_{-0.018}$	$1.715\substack{+0.015\\-0.015}$	$1.725\substack{+0.022\\-0.016}$	$1.705\substack{+0.015\\-0.011}$	$1.675^{+0.012}_{-0.014}$
d_{23} (Å)	$1.805^{+0.006}_{-0.011}$	$1.770^{+0.012}_{-0.014}$	$1.720\substack{+0.011\\-0.011}$	$1.710\substack{+0.012\\-0.009}$	$1.705\substack{+0.011\\-0.013}$	$1.710\substack{+0.010\\-0.014}$
d_{34} (Å)	1.800 ± 0.010	$1.795^{+0.012}_{-0.012}$	$1.775^{+0.014}_{-0.021}$	$1.715^{+0.024}_{-0.017}$	$1.71\substack{+0.014 \\ -0.016}$	$1.700\substack{+0.014\\-0.014}$
d_{45} (Å)	1.790 ± 0.013	$1.800^{+0.017}_{-0.014}$	$1.790\substack{+0.028\\-0.015}$	$1.760^{+0.028}_{-0.017}$	$1.72^{+0.024}_{-0.017}$	$1.715\substack{+0.014\\-0.014}$
d_{56} (Å)	$1.800^{+0.010}_{-0.009}$	$1.790^{+0.020}_{-0.017}$	$1.800^{+0.028}_{-0.028}$	$1.790^{+0.021}_{-0.022}$	$1.76^{+0.033}_{-0.022}$	$1.730^{+0.018}_{-0.025}$
d_b (Å)	1.790	1.79	1.79	1.79	1.77	1.70
ΔE (eV)	2270	2070	2220	2090	1450	2120
R_p	0.085	0.093	0.170	0.138	0.096	0.111

R. Nünthel, PhD Thesis FUB 2003

Freie Universität Berlin

SP-KKR calculation for ΔE_{band} and IEC for rigit fcc and relaxed fct structures

R. Hammerling, P. Weinberger et al., PRB **68**, 092406 (2003)

Freie Universität Berlin

J. Lindner, K. B. Topical Rev., J. Phys. Condens. Matter 15, R193-R232 (2003)

Freie Universität Berlin

Interlayer exchange coupling and its T-dependence.

P. Bruno, PRB 52, 411 (1995); V. Drchal et al. PRB 60, 9588 (1999)

$$J_{\text{inter}} = J_{\text{inter},0} \left[\frac{T/T_0}{\sinh(T/T_0)} \right] \quad T_0 = \hbar v_F / 2\pi k_B d$$

N.S. Almeida et al. PRL 75, 733 (1995)

$$J_{inter} = J_{inter,0} [1 - (T/T_c)^{3/2}]$$

Ni₇Cu₉Co₂/Cu(001) T=55K - 332K

J. Lindner et al. PRL **88**, 167206 (2002)

 $(Fe_2V_5)_{50}$ T=15K - 252K, T_C=305K

Freie Universität Berlin

S. Schwieger, W. Nolting, PRB 69, 224413 (2004)

All contributions due to the spacer, interface and magnetic layers, nevertheless give an effective power law dependence on the temperature:

 $J(T) \approx 1 - AT^n, \quad n \approx 1.5$

T dependence of IEC

S. Schwieger et al., PRL 98, 57205 (2007)

(1)

The dominant role of thermal magnon excitation in the temperature dependence of the interlayer exchange coupling: experimental verification

S. S. Kalarickal,^{*} X. Y. Xu,[†] K. Lenz, W. Kuch, and K. Baberschke[‡] Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany

PRB 75, 224429 (2007)

Freie Universität Berlin

4. Summary: Very fruitful collaboration between theory and experiment.
Theory can disentangle various mechanisms (K^s, K^v, layer-by-layer, spin waves or band structure, etc.)
Experiment needs no muffin tin radius, is full-relativistic (anisotropy depends on orbital magnetism)

For details see: K. B. in Vol. 3 *Handbook of Magnetism and Advanced Magnetic Materials*, Ed. Kronmüller and Parkin, 2007 John Wiley & Sons, Ltd.

Theory: H. Ebert, LMU; J.J. Rehr, UW; O. Eriksson UU; P. Weinberger, TU Vienna;

R. Wu, D.L. Mills, UCI; P. Jensen + K.H. Bennemann, FUB; W. Nolting, HUB

Thanks to my former coworkers: S. Kalarickal, X. Xu, K. Lenz, J. Lindner, E. Kosubek, H. Wende, C. Sorg, F. Wilhelm, A. Scherz, a. o.

> *Support:* BMBF, DFG

Freie Universität Berlin