Investigation of Ultrathin Ferromagnetic Films by Magnetic Resonance

Klaus Baberschke
Freie Universität Berlin, Berlin-Dahlem, Germany

1 INTRODUCTION

When a magnetic dipole moment is subjected to a magnetic field \(\vec{H} \), it experiences a torque motion. Its equation of motion is given by

\[
\frac{\partial \vec{\mu}}{\partial t} = \gamma \left[\vec{\mu} \times \vec{H}_0 \right] \quad \text{with} \quad \gamma = \frac{g\mu_B}{\hbar} = \frac{g}{2mc}
\]

(1)

\[
\frac{\partial \vec{M}}{\partial t} = -\gamma (\vec{M} \times \vec{H}_{\text{eff}})
\]

(2)

The motion of the angular momentum or the magnetic moment consists of a uniform precession about \(\vec{H} \) with angular velocity \(\omega_L = -\gamma \vec{H} \). Without damping, the component of \(\vec{\mu} \) along \(\vec{H} \) remains fixed in magnitude, so that the ‘Zeeman energy’ \(E = \vec{\mu} \cdot \vec{H} \) is a constant of the motion. Real systems have a finite damping (relaxation). The dissipation of this part of energy can be pumped into the torque motion by means of microwave radiation in resonance with \(\omega_{MW} = \omega_L \), yielding a Lorentzian linewidth \(\Delta H \) (Figure 1b, see Section 4). Electron paramagnetic resonance (EPR) (equation 1) and ferromagnetic resonance (FMR) (equation 2) [1] are based on the same principle – for EPR see (Abragam and Bleaney, 1966; Orton, 1968; Pake, 1962), for FMR see (Vonsovskii, 1966; Heinrich, 1994; Farle, 1998). Historically, they followed very different routes: For EPR \(H_0 \), the local and the external field are equal and known with high precision. The only unknown quantity is the \(g \)-factor or \(g \)-tensor. For FMR it is the opposite, \(\vec{H}_{\text{eff}} \) of a ferromagnet is the unknown parameter. It is the vector sum of several anisotropic field contributions (dipole, spin orbit, external, and microwave).

\[
\vec{H}_{\text{eff}} = \vec{H}_{\text{dipole}} + \vec{H}_{K} + \vec{H}_0 + \vec{h}_{MW}
\]

(3)

Note that the exchange field in a ferromagnet is always parallel to \(\vec{M} \) and does not contribute to the torque. \(\vec{M} \) can be seen as the sum of the individual moments per volume \(\vec{M} = \sum \vec{\mu}_i \). For ultrathin simple ferromagnetic films (e.g., Fe, Co, Ni), \(\mu \) is defined per particle.

In this chapter we will give a brief overview of three aspects that are most important for the investigation of novel magnetic nanostructures by means of microwave spectroscopy: The UHV-FMR technique and its monolayer sensitivity and the static parameters of magnetism (e.g., magnetic anisotropy energy (MAE) and interlayer exchange coupling (IEC), both measured with FMR in absolute energy.
units). Finally in Section 4 we give examples for the spin dynamics determined from the FMR linewidth.

The examples used here, mainly from our own work, will elucidate the strength of FMR and its intimate contact with ab initio calculations exactly adapted to FMR experiments.

2 In situ UHV-FMR: EXPERIMENTAL DETAILS

Magnetic resonance spectroscopy will be most instructive if external parameters can be varied. One important parameter is the temperature \(T \). The intensity of the magnetic resonance signal (area under the resonance line) is proportional to the static susceptibility (White, 1970). Temperature variation allows us to study the EPR above the Curie temperature \(T_C \) and the FMR in the ferromagnetic phase below \(T_C \), cf. Section 4. Other phase transitions such as those in superconductors or crystallographic phase transitions can be studied with paramagnetic impurities as a sensor by means of EPR (Baberschke, 1976; von Waldkirch et al., 1973). In ferromagnets, one of the most important quantities is the MAE and its temperature dependence (Heinrich, 1994; Vonsovskii, 1966; Farle, 1998). FMR measures this directly in absolute energy units, cf. Section 3 [2]. Equally important is the measurement of the angular dependence of the resonance signal. Following equation (1), it is a standard procedure in the paramagnetic regime to determine the anisotropic magnetic moment, that is, the \(g \)-tensor (Abragam and Bleaney, 1966; Orton, 1968; Pake, 1962). If these experimental requirements can be combined with UHV, the EPR/FMR will be a very powerful experimental tool to study ultrathin ferromagnetic films. The ultimate sensitivity of microwave spectroscopy is in the range of \(10^{11} \) spins. Usually, in standard surface science and UHV technique, molecules are adsorbed with a submonolayer coverage onto a crystalline substrate, for example, a Cu(001) crystal. Equivalently, ferromagnetic monolayers (ML) of Fe, Co, and Ni are epitaxially grown on such a substrate with a surface area of a few square millimeters. This corresponds to \(\sim 10^{14} \) lattice sites on the surfaces (Farle et al., 1985). Thus the EPR/FMR should be sensitive to submonolayer coverage. This has been demonstrated for 1/100 ML of paramagnetic molecules (Zomack and Baberschke, 1986).

2.1 In situ UHV-FMR

Figure 2 shows the combination of a UHV chamber and a microwave EPR/FMR spectrometer. Microwave spectrometers are commercially available (Varian, Bruker). The most popular microwave frequency is 9 GHz (X band). The corresponding microwave cavity usually has a geometric size of \(\sim 4 \text{ cm} \times 4 \text{ cm} \) (wavelength of the microwave \(\sim 3–4 \text{ cm} \)) with a central access hole of 0.5–1 in. diameter for inserting the sample. In this central access hole a quartz finger tip of a UHV chamber is inserted. In other words, the microwave cavity and all other parts of the spectrometer are operated in laboratory air. Only the sample itself is prepared and measured in situ under UHV conditions. This offers a very important variety of experiments, for example, to measure ultrathin films, first facing vacuum without protection layer. Then adding a cap layer and monitoring the effect of the capping on the magnetism of the ultrathin ferromagnet, or adding step-by-step in situ a second ferromagnetic film and studying IEC, and so on. Figure 2 shows the large electromagnet with external fields of 10–15 kOe and the field axis pointing horizontally in the laboratory frame. The sample itself is mounted on a vertical UHV manipulator with a rotating vertical axis. This allows full angular-dependent measurements varying the magnetic field from in plane to out of

Figure 1. (a) Sketch of the uniform precession of vector \(\vec{M} \) about the external field \(\vec{H}_0 \). (b) Zeeman levels for a spin \(m_s = \pm 1/2 \) system and the dipole transition for \(h_{\text{MW}} \) being perpendicular to \(\vec{H}_0 \).
Figure 2. Sketch of the combination of a conventional EPR spectrometer with a large electromagnet and a UHV chamber equipped with all necessary installations for surface science physics (Zomack and Baberschke, 1986; Farle, 1998). The pumping station is mounted on the left-hand side, whereas the bottom part of the UHV chamber is inserted into the electromagnet and the microwave cavity. The electromagnet (being movable on a track) and the microwave cavity are taken away from the UHV chamber for a standard bakeout procedure to reach a base pressure in the 10^{-11} mbar range. For details see text.

Figure 3 shows the EPR/FMR of Gd/W(110) as one example. The Curie temperature of bulk Gd equals $T_{Cb} \approx 292$ K, for 1.6 ML Gd/W(110) it is $T_C < 292$ K (open squares) due to the finite size effect. Figure 3(b) convincingly shows the high sensitivity of the FMR. At 316 K, the signal for 1.6 ML is recorded with a very good signal-to-noise ratio. The resonance signal has been monitored from 360 K to below the corresponding Curie temperature for each film (Farle and Baberschke, 1987). The steep increase of the intensity follows the temperature dependence of the susceptibility of the Gd films. The external field \vec{H}_0 was applied in plane along the easy axis of the Gd film. Consequently, the external resonance field shifts to lower values at lower temperature because the internal one $\vec{H}_{\text{dipole}} + \vec{H}_K$ increases when the temperature is reduced.

The idea of a fingertip inserted into a microwave cavity has been used before for $^3\text{He}/^4\text{He}$ dilution refrigerators (Nagel et al., 1980; Baberschke and Tsang, 1980). The same idea of experimental setup, namely, the combination of UHV technique with magnetic measurements can be used to determine the magnetization with a SQUID (Ney et al., 2002) as well as the ac-susceptibility χ_{ac} (Stetter et al., 1992). All three techniques FMR, SQUID, and χ_{ac} combined with state-of-the-art surface physics and UHV technique offer a new insight into the understanding of the fundamentals of the magnetism of ultrathin ferromagnetic films.

2.2 Multifrequency FMR

Following equation (1), we estimate that a typical resonance condition is given for ~ 10 GHz and ~ 3.5 kOe. Under certain limitations the absorption of electromagnetic waves between two Zeeman levels is proportional to ω^2. Thus EPR microwave spectroscopy is more sensitive by ~ 4 orders of magnitude than nuclear magnetic resonance operating in the range of 100 MHz. On the other hand, microwave spectroscopy has some limitations. It operates usually only at one fixed frequency due to microwave oscillators and the waveguide technique. Consequently, the magnetic field has
Figure 3. Typical magnetic resonance spectra of ferromagnetic monolayers (Farle and Baberschke, 1987). (a) EPR intensity for different film thickness: 80 Å (full circles), 1.6 ML (open squares), 0.8 ML (open triangles). The arrow at 316 K corresponds to the experimental spectrum given in (b). Note that the spectrum at 295 K in (b) is still above T_C. (c) FMR of 7 ML Ni/Cu(001) at 1, 4, and 9 GHz. The spectra are taken in the ferromagnetic phase. Corresponding to equations (1) and (2) also the external Zeeman field reduces if the microwave frequency is reduced. Note the narrowing of the linewidth – at 1.12 GHz the linewidth is $\Delta H = 15$ Oe only (cf. Section 4). All three spectra are taken in situ in UHV without protective layer for the same film, just by replacing the microwave cavities.

to be scanned (see Figure 1b). The majority of experiments are performed in dilute paramagnetic systems. These experiments focus mostly on the determination of the different components of the g-tensor (equation 1). Consequently, the larger the frequency, the better the separation of different components of the g-tensor (slopes in the Zeeman level) for a given linewidth. Field scanning in a ferromagnetic film creates some difficulties. First of all, in contrast to a paramagnet, the ferromagnet has an internal anisotropy field with an easy and a hard axis in the crystallographic frame. Thus, the applied external field and the internal field are usually not collinear. Scanning the external field through the resonance condition means, in principle, dragging the magnetization behind the field direction and, as a consequence, the Lorentzian line shape should be deformed. Fortunately, this effect is very small. More important is the analysis of the measured linewidth itself. If determined at only one frequency, it will not be so easy to interpret this value. In the past, quite frequently some inhomogeneous broadening assuming local field distribution was used for the interpretation of the width. In Figure 3(c) we show the FMR of 7 ML Ni/Cu(001) at 1, 4, and 9 GHz. Obviously, the linewidth is strongly frequency dependent and narrows down to a few oersteds only at low frequencies. This means that frequency-dependent measurements are very important to disentangle relaxation processes and other contributions to the linewidth of the FMR in ultrathin ferromagnetic films. Fortunately, microwave cavities in this lower frequency range (1, 3, 4 GHz) are available with the same geometrical size as the 9 GHz cavity and the same central access hole of 1 in. diameter. This allows us to keep the sample in UHV, only replacing the 9 GHz microwave cavity by a 1 or 4 GHz cavity, and measure the same film. In Section 4 it will be shown that FMR measurements at very high frequencies of 200 GHz and more are also of relevance to investigate the dynamics of magnetic nanostructures. For these frequencies, the wavelength reduces to below the millimeter regime. Different experimental techniques are needed (Silsbee et al., 1979;
Monod and Janossy, 1977). Currently these experiments are not performed in UHV. Here, one still needs a protective cap layer to record the FMR signal.

3 g-TENSOR AND MAGNETIC ANISOTROPY ENERGY (MAE)

To solve the equations of motion equations (1) and (2) under the influence of a small oscillatory microwave field \tilde{h}_{MW} with $\tilde{h}_{\perp} \perp \tilde{H}_0$ and to calculate the resonance condition with ω_{MW} and a given external magnetic field H_0 we refer to standard literature, for example, (Vonsovskii, 1966; Heinrich, 1994; Farle, 1998). It is the advantage of magnetic resonance spectroscopy that the method to calculate the resonance condition and interpret, for example its angular dependence (direction of H_0 with respect to the crystallographic axis of ultrathin films), is well established for a long time. In this section we give a few examples to demonstrate the power and usefulness of FMR to gain information on the intrinsic parameters of ultrathin ferromagnetic structures. The resonance conditions are given below for the polar and azimuthal angular dependence

$$\left(\frac{\omega}{\gamma}\right)^2 = \left[H_0 \cos(\theta - \theta_H) + \left(-4\pi M_{\text{eff}} \frac{2K_{2\parallel}}{M} + \frac{K_{4\perp}}{2M} - \frac{K_{4\parallel}}{2M}\right) \cos 2\theta + \frac{K_{4\perp}}{M}\right] \times \left[H_0 \cos(\theta - \theta_H) + \left(-4\pi M_{\text{eff}} \frac{2K_{2\parallel}}{M} + \frac{K_{4\parallel}}{2M}\right) \cos 2\theta + \frac{K_{4\parallel}}{M}\right]$$

4$\pi M_{\text{eff}} = 4\pi M - 2K_{2\perp}/M$ (5)

and for $\theta = \theta_H = 90^\circ$:

$$\left(\frac{\omega}{\gamma}\right)^2 = \left[H_0 \cos(\varphi - \varphi_H) + \frac{2K_{2\parallel}}{M} \cos 2(\varphi - \varphi_H) + \frac{2K_{4\perp}}{M} \cos 4\varphi\right] \times \left[H_0 \cos(\varphi - \varphi_H) + \frac{2K_{2\parallel}}{M} \cos 2(\varphi - \varphi_H) + \frac{2K_{4\parallel}}{2M} (3 + \cos 4\varphi)\right]$$

where θ_H is the polar angle of the external magnetic field H_0 with respect to the surface normal of the thin film, θ the angle of the magnetization, and φ the azimuthal angle in plane. Only along the easy and hard axis of the magnetization, the vectors \tilde{M} and \tilde{H}_0 are parallel and $\theta = \theta_H$. For all other orientations, the equilibrium angle of θ can be calculated by minimizing the free energy of the system (Smit and Beljers, 1955). Full angular-dependent measurements of the FMR of ultrathin films have shown in numerous cases the dragging of the magnetization, see for example, Figure 38 in (Farle, 1998). Equations (4)–(6) also show the various contributions of anisotropy fields K_{ij}/M (Berghaus et al., 1989). In several cases, the analysis of the experimental results was projected on two mechanisms only as given in equation (5): The dipole or shape anisotropy field $4\pi M$ and the so-called uniaxial out-of-plane anisotropy contribution $K_{2\perp}/M$, also called $K_{4\perp}/M$. However, equations (4) and (6) show that full angular-dependent FMR measurements also give access to $K_{2\parallel}$. An axial in-plane symmetry is usually caused by steps at the surface or can be observed for vicinal crystal surfaces. Since many of the ultrathin ferromagnets (Fe, Co, Ni) are grown pseudomorphically on nonmagnetic single-crystal substrates like Cu or GaAs, they will not grow in their bulk crystallographic cubic structure but will be tetragonally or trigonally distorted. This can easily be detected by monitoring the $K_{4\perp}$ and $K_{4\parallel}$ contributions – K_4 is a fourth-order term but in most cases not of cubic symmetry. For details of the MAE and its notation, see Appendix B.

As stated in the introduction one focal point of FMR investigations in the past was the determination of anisotropy energies and anisotropy fields in ultrathin ferromagnets. It was often assumed that the g value is close to $g = 2$ for the free electron (Vonsovskii, 1966; Heinrich, 1994). In contrast, equations (4) and (6) offer the opportunity to determine not only anisotropy fields but also, independently, the proper g value as is common practice in standard EPR. Resolving the double parentheses product in equation (4), we see that there exists one term that depends only on the external magnetic field H_0^2. FMR experiments at different frequencies offer the possibility of determining g also from the proportionality of the parabolic behavior of $\omega^2 = f(H)$. This will be discussed in the following subsection.

3.1 g-tensor, μ_1, μ_S

In the past it was often assumed that the orbital magnetic moment is quenched in cubic Fe, Co, and Ni structures and magnetism was explained in terms of the spin magnetic moment only. However, giant orbital magnetic moments have been observed recently in magnetic nanostructures (Gambardella et al., 2003). Even in bulk cubic materials, the survival of large orbital moments for itinerant magnets has been observed (Brewer et al., 2004). Kittel (Meyer and Asch,
1961) has already shown that the departure from \(g = 2 \) is a measure of the ratio of orbital-to-spin magnetic moment [3].

\[
\frac{\mu_L}{\mu_S} = \frac{g - 2}{2}
\]

(7)

For bulk Fe, Co, and Ni, the \(g \) value increases from 2.09 to 2.21 (Stearns, 1986). This tells us that in Ni \(\mu_L \) is already 10% of the spin moment, and \(\mu_L \) is parallel to \(\mu_S \) in accordance with the positive sign of the spin-orbit coupling constant. In EPR, it is also well known that the light 3d elements like Cr have \(g \) values \(g < 2 \), the spin-orbit constant is negative and \(\mu_L \) and \(\mu_S \) are aligned antiparallel. EPR/FMR have the capability to measure orbital and spin magnetism. As a matter of fact, standard second-order perturbation theory (Abragam and Bleaney, 1966; Orton, 1968; Pake, 1962) shows that the MAE and the anisotropy of the orbital magnetic moment are caused by the same matrix elements mixing excited states into the magnetic ground state.

One example in thin-film magnetism is given in Figure 4. A thick Fe film and ultrathin Fe\(_n\)/V\(_m\) multilayers were measured by two techniques: FMR and X-ray magnetic circular dichroism (XMCD) (Anisimov et al., 1999). For the same specimen, the ratio of the orbital-to-spin magnetic moment was measured by both techniques. In Figure 4(a), the ratio is given as function of the Fe thickness. A thick Fe film of 40 nm shows \(g = 2.09 \) corresponding to \(\mu_L/\mu_S = 0.045 \). When reducing the Fe thickness to 4 and 2 MLs only, the \(g \) value increases up to \(g = 2.26 \), which means an increase of \(\mu_L \) by a factor of 3. In Figure 4(b), the XMCD spectra for both, the V and Fe L\(_{3,2}\) edges are plotted. It is known that at an Fe/V interface a magnetic moment is induced at the V site. Following Hund’s rule for V (Fe) spin and orbital moment are antiparallel (parallel) aligned. This leads to an enhancement of the effective orbital moment and a reduction of the total spin moment. FMR measures the total magnetic response of such a multilayer structure, whereas X-ray absorption spectroscopy (XAS) and XMCD (see also Synchrotron Radiation Techniques Based on X-ray Magnetic Circular Dichroism, Volume 3 and Magnetic Spectroscopy, Volume 1) are element-specific methods and are, therefore, in a position to measure the magnetism at the Fe and the V site separately as shown in Figure 4(b). The apparent discrepancy between the determination of \(\mu_L/\mu_S \) by FMR and XMCD can therefore easily be explained. XMCD (full circles) measure only the Fe contribution. For the total response as probed by FMR we note from Figure 4(b) that the spin moment of V is antiparallel to that of Fe. The total spin moment is reduced. In contrast, the orbital moments of Fe and V are aligned parallel. Therefore, the larger value for the ratio (open circles) determined by FMR is completely understandable.

In conclusion, owing to its element-specificity, XMCD measures \(\mu_S \) and \(\mu_L \) at the Fe and the V site separately. FMR determines the ratio \(\mu_L/\mu_S \) from the \(g \) value. If a second measurement, for example by SQUID, provides the total magnetization \((\mu_L + \mu_S) \), spin and orbital contributions may be separated without XMCD.

3.2 MAE in a ferromagnetic monolayer

The in situ FMR in ultrathin Ni/Cu(001) films of 3–25 ML has been used to study the spin reorientation transition (SRT) (Schulz and Baberschke, 1994). To analyze the experimentally determined \(K \) values properly it is important to notice that when changing the thickness of the ferromagnetic film, the Curie temperature \(T_C \) will change, too. It is therefore not advisable to plot \(K(1/d) \) at a fixed thermodynamic temperature \(T \) but rather at the reduced temperature \(t = T/T_C \).

![Figure 4. Orbital and spin magnetic moments, \(\mu_L \) and \(\mu_S \), respectively, of Fe/V multilayers measured by FMR and XMCD (Scherz et al., 2001). (a) The ratio \(\mu_L/\mu_S \) increases with decreasing Fe thickness. Note that XMCD measures only the Fe moments (full circles), whereas FMR measures the total (Fe and V) response (open circles). The ratio \(\mu_L/\mu_S \) of V in Fe\(_2\)/V\(_2\) as obtained from XMCD (full squares) is negative because \(\mu_L \) and \(\mu_S \) are aligned antiparallel in V. (b) XMCD spectra (thick solid line) and integrated XMCD signals as they would appear in the spin (thin solid line) and orbital (dotted line) sum rule.](image-url)
Comparing experimental results only makes sense if the data are taken at the same reduced temperature. The MAE vanishes at T_C, that is, it is zero in the paramagnetic regime. In Figure 5(a) two sets of data are plotted: full circles at $t = 0.56$ and open triangles at $t = 0.74$. That this is an important point is seen in Figure 5(b) in which experimental data are plotted at a fixed temperature of $T = 300 \, \text{K}$ as a function of the thickness from ~ 1 to $\sim 10 \, \text{ML}$. At first glance, it seems that as the film becomes thinner the anisotropy K increases with a positive slope. If, however, the data of Farle et al. (1999) (full circles) are plotted at a fixed, reduced temperature $t = 0.21$ (Figure 5c) instead of a fixed absolute temperature $T = 300 \, \text{K}$, again a linear function of $1/d$ results with negative slope up to $\sim 6 \, \text{ML}$. This is the only correct way of analyzing magnetic anisotropy of ultrathin films. Figures 5(a) and 5(c) can be interpreted in the same way: Starting from right to left, at very thin films of $\sim 3 \, \text{ML}$ we see a linear increase with negative slope of $f(1/d)$ up to a particular value of $\sim 15 \, \text{ML}$ for Ni and $\sim 6 \, \text{ML}$ for Co. In the ultrathin limit, the Ni and Co films grow pseudomorphically with tetragonal distortion for Ni(001) (trigonal for Co(111)). At the bending, the pseudomorphic growth stops and the films grow in the natural bulk structure of the specific material, for example, fcc for Ni. These linear dependences of $K(1/d)$ in Figure 5(a) and 5(c) confirm equation (A3), namely, the classical argument by Néel that the surface and interface anisotropies scale down with $1/d$. The diagrams also show the extrapolation of the linear slope to the y axis indicated as K^V. Let us assume for sake of argument that ultrathin films of Ni or Co grew with a rigid perturbed lattice structure (i.e., tetragonally distorted owing to pseudomorphic growth) up to infinite thickness, indeed an extremely large volume anisotropy of 30 or 90 $\mu \text{eV}/\text{atom}$ would occur. Of course, ferromagnetic films do not do that. The growth mode collapses back to the natural bulk lattice structure of the material with much lower anisotropy per particle. We did observe that this linear function and bending in $K(1/d)$ is the most sensitive indicator for changes in the growth mode. The crystallographic structure may change only by less than 0.1 Å, which is difficult to measure by diffraction (LEED) but does have large effects on MAE and K.

FMR measures the total M_{eff} (equation (5)). After subtraction of the dipole contribution $2\pi M^2$, the K parameters (Figure 5) can be plotted as a function of $1/d$ or as a function of T (for details see Appendix B). We also see that $2\pi M^2$ has to be scaled with the reduced temperature. It is obvious that because of the small magnetic moment per Ni atom the shape anisotropy for Ni is much smaller ($\sim 10 \mu \text{eV}/\text{atom}$) than for Co ($\sim 90 \mu \text{eV}/\text{atom}$) with a large magnetic moment per atom. This is the simple reason why the easy axis of magnetization for ultrathin ferromagnetic films of Co is in most cases in plane. Whereas for Ni the K anisotropy caused by the spin-orbit coupling can exceed the dipole contribution and result in an SRT from in plane to out of plane at $\sim 7–9 \, \text{ML}$ (e.g., Figure 5a). For details see (Baberschke 1996, 2001; Farle, 1998). Like in bulk ferromagnets, the various K_i parameters have a different temperature dependence. For bulk, see (Stearns, 1986), for ultrathin films, see (Farle, 1998; Baberschke, 2001). In equations (4) and (6) the shift of the external resonance field H_0 as a function of the temperature or angle is measured in absolute field units, that is, Oe. For a given magnetization, this can easily be translated into energy units. Many other spectroscopies discussed in this volume measure magnetic anisotropy usually only in arbitrary units. Determining the absolute MAE is the strength of the FMR. Therefore, a new challenge is to compare FMR experiments with $ab\,\text{initio}$ calculations from first principles.

The importance of the temperature dependence of the MAE in ferromagnetic nanoclusters recently became very evident. Various groups have investigated small ferromagnetic particles (e.g., Co) by means of MOKE and XMCD, measuring very large MAE and orbital magnetization.

![Figure 5](image.png)

Figure 5. K_2 anisotropy as a function of $1/d$ (a) for Ni/Cu(001) at different reduced temperatures (Schulz and Baberschke, 1994), (b) and (c) for Co/Cu(111). The data in (b) are taken from (Huang et al., 1994) (open squares) and (Kohlhepp et al., 1993) (asterisks). Both were measured at fixed, ambient temperature. The data taken from (Farle et al., 1999) (full circles) are plotted at fixed temperature in (b) and as a function of reduced temperature in (c).
Usually, one assumes a uniaxial anisotropy constant K_u. However, Antoniak et al. (2005) measured the temperature dependence $K(T)$ for Fe/Pt nanoparticles with FMR and observed that it changes between 50 and 300 K by one order of magnitude. This explains the whole magnetic behavior of these nanoparticles.

To demonstrate the high sensitivity of the MAE on small crystallographic lattice perturbations, we show in Figure 6(a) *ab initio* calculations for an infinite-sized single Ni crystal. It is an all electron, full relativistic calculation including orbital polarization (full symbols) and without orbital polarization (open symbols). The infinite-sized crystal was chosen to demonstrate the importance of the volume contribution K^v. K^v is defined as the difference in total energy between the hard and easy axis, for bulk Ni the [100] and [111] magnetization directions (Hjortstam et al., 1997). The difference in total energy was calculated for different ratios c/a, starting from an fcc lattice ($c/a = 1$), passing through a regime with tetragonal symmetry and ending in a bcc symmetry ($c/a = 1/\sqrt{2}$). For fcc and bcc, K^v almost vanishes, $K^v \ll 1 \mu$eV/atom. In the tetragonal regime, K^v increases by orders of magnitude up to $K^v \approx 500 \mu$eV/atom. For the FMR experiments shown in Figure 5, the pseudomorphic growth of the Ni film produces a constant ratio $c/a \approx 0.95$ (gray regime in Figure 6a). The *ab initio* calculations in Figure 6 yield an anisotropy energy of $K^v \approx 100 \mu$eV/atom. This result is in perfect agreement with the experimental finding after extrapolating the experimental value to $K^v (T = 0)$.

Comparing experiment and theory, one comes to the conclusion that changes in the nearest-neighbor distance of $\sim 3\%$, that is, $\sim 0.05 \AA$, may change the MAE by orders of magnitude.

The Weinberger group (Überacker et al., 1999) has performed similar calculations for a particular FMR experiment on a 12 ML Ni film grown on a Cu substrate and facing vacuum. Figure 6(b) shows the magnetic part of the difference in total energy per individual Ni layer. For the open triangles, a rigid, unrelaxed fcc lattice was assumed, whereas open squares and open circles are calculations for a relaxed tetragonal Ni structure adapted to the lattice of the Cu substrate. It is obvious that the topmost Ni layer facing vacuum shows a large negative contribution corresponding to the negative slope in Figure 5(a). It is also clear that the first Ni layer on the Cu substrate has a different (smaller) negative energy contribution due to hybridization with the Cu band structure. Such an effect cannot be separated in an FMR experiment -- the experiment measures the sum of the two contributions. However, the center part of the 12 ML Ni film is most instructive: For a rigid cubic lattice, their energy contribution is very small. If, however, one puts the real relaxed lattice as determined from experiment into the calculation, we see that the center part of an ultrathin film also contributes to the total MAE in full agreement with the results of Figure 6(a). That is to say, surface and interface magnetic anisotropy contributions K^j are certainly very large following the early argument by Néel, but they usually count only

![Figure 6. Ab initio calculations of MAE and IEC for various Ni structures. (a) The difference in total energy is calculated for an infinite-sized Ni crystal as a function of the ratio c/a. (Taken from Hjortstam et al., 1997.) The lower part shows the orbital moment and its anisotropy. (b) Similar *ab initio* calculations for a 12 ML Ni film, layer resolved. (Taken from Hjortstam et al., 1997.) (c) Similar calculations for a trilayer also showing the IEC, see Section 3.3. (Taken from Hammerling et al., 2003.)](image-url)
for one layer each, whereas the central part of an ultrathin film counts for \(n - 2 \) layers. For the particular example shown here, it is obviously clear that the \(K^v \) contribution to the total MAE is the dominating one. For the details of the nomenclature, see Appendix B.

3.3 UHV-FMR in a trilayer and interlayer exchange coupling (IEC)

The archetype of a magnetic multilayer structure is the so-called ‘trilayer’, consisting of two FM films, FM1 and FM2, weakly exchange coupled via a nonmagnetic spacer NM. Two exchange-coupled ferromagnetic films exhibit two eigenmodes of the uniform motion of the magnetizations \(M_1 \) and \(M_2 \) – like two coupled pendula. Analogous to the notion of phonon branches, they are labeled acoustic (in phase) and optic (\(\pi \) out of phase) modes. The FMR is the technique of choice for investigating these spin-wave dynamics (Lindner and Baberschke, 2003b). It measures both AFM and FM coupling and determines the MAE and IEC parameters. For such a case, \(\vec{M} \) has to be replaced by the vector sum \(\vec{M}_1 + \vec{M}_2 \) in the equation of motion, equation (2).

Furthermore, an additional energy contribution of the IEC energy is added to the free-energy density. Following the FMR resonance condition, equations (4–6) also have to be modified. One has to distinguish the individual anisotropy parameters of each FM film, for example, \(K^v_{Ni} \) and \(K^v_{Co} \) (for details see (Heinrich, 1994; Lindner and Baberschke, 2003a). In theoretical calculations, the IEC usually enters with an IEC constant at \(T = 0 \). Most of the experiments are analyzed with an effective parameter \(J_{inter} \).

\[
F_{ex} = -J_{inter} \vec{M}_1 \cdot \vec{M}_2
\]

The scalar product \(\vec{M}_1 \cdot \vec{M}_2 \) takes care of the individual orientation of \(M_i \) in each film. (Note that in an FMR experiment with an external magnetic field \(H_0 \), the orientation of \(M \) changes as a function of the orientation and strength of \(H_0 \).) In Figure 7, an instructive example is given showing that in a step-by-step experiment the UHV-FMR gives detailed information on all relevant magnetic parameters for such trilayers.

Figure 7(a) and (b) show the experimental and simulated FMR spectra of a Ni/Cu/Co trilayer at two different temperatures along the in-plane easy axis, taken from (Lindner et al., 2002). First the single Co film on Cu(001) was measured (dotted). Subsequently the top Ni film was evaporated. The same type of experiment was carried out for different spacer thicknesses \(d_{Cu} \) for AFM and FM coupling. \(J_{inter} \) determined from the FMR fitting is plotted in absolute energy units in (c) and normalized to \(T = 0 \) in (d) as a function of an effective \(T^{3/2} \) law (Schwieger et al., 2007).
temperatures. First, only the Co$_2$ film capped with the Cu$_9$ spacer layer was prepared. A single resonance line (dotted) is recorded. Its intensity and position change because K_1 and M are temperature dependent. In a second step, the Ni$_7$ film is deposited on top. At room temperature, the FMR records two resonance lines: one of the weak optical mode and a second one of the strong acoustical mode. From the intensity and position of the two lines it is immediately evident that this trilayer has an AFM coupling between the two ferromagnetic films (Heinrich, 1994; Lindner and Baberschke, 2003a). The simulation of the coupled resonance lines (dashed) is in perfect agreement with experiment. A full measurement of the dependence on the polar angle and the temperature gives access to all MAE parameters, provided $M(T)$ is known from another experiment. Taking the angular dependences of only the bottom film and the IEC trilayer, all unknown parameters influencing the resonance field of the optical and acoustical mode can be determined. The only parameter left, which determines the resonance shift, is J_{inter} itself. This straightforward way of determining the coupling demonstrates the advantage of in situ measurement. The coupling between FM1 and FM2 is an oscillatory function of the spacer thickness (Bruno and Chappert, 1991). For the particular system Ni$_7$/Cu$_d$/Co$_2$, this has been observed and determined by UHV-FMR for a spacer thickness in the range of $d_{\text{Cu}} = 2–9$ ML (Lindner and Baberschke, 2003a). Again, it is documented in textbooks (Heinrich, 1994) that FMR is equally applicable for AFM and FM coupling: for AFM coupling, the intense acoustical mode appears at a lower magnetic field than the acoustical mode. We note that FM1 and FM2 in trilayers may also consist of the same material, for example, Ni$_8$/Cu$_d$/Ni$_9$. For Ni films of different thicknesses, the MAE values and magnetization are different, leading to different eigen resonances of the individual modes.

Another important parameter for understanding the magnetism of coupled ferromagnetic films is the temperature dependence of the coupling strength, that is, $J_{\text{inter}} = f(T)$. Two models were proposed in the past:

1. Thermally excited spin waves in the magnetic layers lead to a reduction of the effective IEC. In this model, the characteristic temperature is given by T_C. Arias and Mills calculated a $T^{-3/2}$ power law (Arias and Mills, 1999, 2000):

$$\frac{J_{\text{inter}}}{J_{\text{inter},0}} = 1 - a \left(\frac{T}{T_C}\right)^{3/2}$$

Other parameters like the thickness of the spacer layer are hidden in the prefactor a.

2. In the framework of electronic band structure, the smearing of the Fermi edge at elevated temperature makes the coupling less effective, excitations of electron–hole pairs reduce the IEC (Bruno, 1995). This temperature-dependent factor was calculated by Bruno as given in equation (10).

$$\frac{J_{\text{inter}}}{J_{\text{inter},0}} = \frac{T}{T_0} \sinh \left(\frac{T_0}{T}\right)$$

The characteristic temperature T_0 is controlled by electronic band structure effects, that is, v_{Fermi} and the spacer thickness. The Curie temperature is no explicit parameter but is implicitly included via the intralayer coupling of the ferromagnets.

Lindner et al. (2002) have shown for various ultrathin film systems over the full temperature range from ~ 0 K up to T_C that the effective temperature dependence is very close to the $T^{-3/2}$ law and can be less well fitted by a $x/\sinh(x)$ function. However, Nolting and coworkers (Schwieger and Nolting, 2004; Schwieger et al., 2005) have reinvestigated the origin of the temperature dependence of the IEC yielding an effective functional dependence, which for given intra- and interlayer exchange parameters gets very close to an effective exponent of $\sim 3/2$ but does not follow the exact power law for spin-wave excitations with $T^{-3/2}$. For the Ni$_7$/Cu$_d$/Co$_2$ trilayer system, the temperature dependence is plotted in Figure 7(c) and (d). Figure 7(c) gives the absolute values for $|J_{\text{inter}}|$. For $d_{\text{Cu}} = 5$ ML, the coupling is FM, for $d_{\text{Cu}} = 4$ ML and $d_{\text{Cu}} = 9$ ML, the coupling is AFM. In Figure 7(d) the measured values are normalized to $T = 0$, this eliminates the temperature-independent part of $|J_{\text{inter}}|$. Nonmonotonic slopes as a function of d_{Cu} are seen; that is, a nonmonotonic temperature dependence of $|J_{\text{inter}}|$. The temperature dependence for AFM coupling is larger than that for FM. This nonmonotonic behavior clearly indicates that the coupling between spin-wave modes will be more important for the temperature dependence of $|J_{\text{inter}}|$, than the smearing of the Fermi edge.

In conclusion, the strength of the effective $T^{-3/2}$ dependence of J_{inter}, depends on various parameters of the electronic band structure, electron–hole excitations, and spin-wave excitations. Further in situ FMR experiments with different Cu thickness and full angular- and temperature-dependent measurements will give the key information to understand the IEC. Recent quantum mechanical calculations based on an extended Heisenberg model give clear evidence that magnon excitations are responsible for about 75% of the temperature dependence of the IEC. The remaining 25% is due to temperature effects in the effective quantum well, formed by the spacer and the spacer/magnet interfaces like
reduced spin asymmetry or softening of the spacer Fermi surface (Schwieger et al., 2007).

Finally, we come back to Figure 6(c) where the Weinberger group has calculated resolved the K anisotropy (ΔE_B) and the IEC for an Ni$_9$/Cu$_d$/Ni$_9$ trilayer. We see that the anisotropy energy depends strongly on the c/a ratio as discussed in the previous section. We also notice that for $d_{Cu} = 3$ ML and $d_{Cu} = 9$ ML the spacer does not contribute to the MAE. The layer-resolved calculated IEC demonstrates clearly that more or less only the Ni layer contributes to the exchange coupling directly at the interface but for very thin spacers (3 ML) the Cu also makes a finite contribution.

4 DYNAMICS IN THE FMR, THE LINEWIDTH ΔH

Starting from Figure 1 it is obvious that the linewidth in the EPR and FMR is a measure of the spin relaxation, scattering, and spin fluctuations. Two principal relaxation paths are discussed in standard literature: spin–lattice relaxation and spin–spin relaxation. The former is a process in which energy dissipates from the magnetic system to the thermal bath. The latter is a process in which energy is scattered within the magnetic spin system. It depends on the concentration of magnetic moments (dilute ferromagnets) and can be discussed in the framework of spin-wave excitations, magnon–magnon scattering, Stoner excitations, and so on. For both processes, phase transitions (structural or magnetic) are of importance: diverging spin fluctuations as a function of temperature will influence the linewidth. Müller and coworkers have given a nice example for the EPR. SrTiO$_3$ undergoes a structural phase transition at ≈ 105 K. If this crystal is doped with a paramagnetic center, the EPR will show a dramatic divergence of the linewidth at this phase-transition temperature (von Waldkirch et al., 1973). Similar effects were observed for the classical antiferromagnet MnF$_2$ at the Néel temperature of $T_N = 67$ K (Burgiel and Stranberg, 1964). In both cases, a dramatic divergence of ΔH is observed.

For bulk ferromagnets like Ni and Fe whiskers also a line broadening in the FMR occurs starting from low temperature and approaching the Curie temperature from the T_C^{-} side.

On the right-hand part of Figure 8, the FMR linewidth $\Delta H(T)$ is shown for bulk Ni. A very sharp peak of only 7 K width is measured at the Curie temperature of $T_C \approx 630$ K. The line broaden from below 200 Oe to more than 1.6 kOe. How can this be understood? Approaching the phase transition from the T_C^- side, one observes a breakdown of the uniform precession of the magnetization. The uniform rotation of the spin waves with infinite wavelength breaks into pieces because of thermal excitations. This increases the FMR linewidth. Starting from the paramagnetic side above T_C^+ also a narrow line of 250 Oe width is observed. The susceptibility and spin–spin correlation length ξ increase dramatically owing to Gaussian and critical fluctuations. The sharpness of the peak in the linewidth is surprising. It depends very much on the high perfection of the crystallographic structure of the single crystal. (Since these measurements are performed in an external magnetic field, ξ will not diverge to infinite.) Applying the UHV-FMR to Ni(111) thin films grown on W(110), we observe in the first place a shift of the diverging peak to lower temperature in full agreement with the thickness-dependent Curie temperature of ultrathin films caused by finite size effects (Baberschke, 1996). At a certain thickness of $d = 4$–6 ML, the Ni film undergoes a transition from 3D to 2D behavior. Immediately, we observe a broadening of the linewidth peak as indicated by ~ 40 K in the figure. This can be easily understood because the fluctuations in less than 3D are enhanced and extended over a larger range of temperature. For details see (Li and Baberschke, 1992; Li et al., 1990).

4.1 Gilbert damping and magnon–magnon scattering

In the following text we focus on the analysis of the linewidth in FMR experiments in ultrathin films deep in the ferromagnetic phase $T < T_C$. This is of particular importance for the investigation of magnetization dynamics and magnetization reversal in magnetic nanostructures. The commonly used ansatz is to add the so-called Gilbert
damping to the equation of motion, equation (2), that is, the second term in equation (11). This Landau–Lifshitz–Gilbert (LLG) equation has been discussed in great detail in many review articles. For FMR in bulk material see, for example (Sparks, 1964; Vonskovskii, 1966), for ultrathin films see, for example (Heinrich, 1994, 2005). The Gilbert ansatz is based on a double vector product \(-\vec{M} \times (\vec{M} \times \vec{H}_{\text{eff}})\) as shown in Figure 9(b) with a resulting vector that is always pointing toward the symmetry axis of the Larmor precession. For small angles \(\beta\) between \(\vec{H}_{\text{eff}}\) and \(\vec{M}\), this can be approximated by the time derivative \(\partial \vec{M} / \partial t\).

\[
\frac{\partial \vec{M}}{\partial t} = -\gamma (\vec{M} \times \vec{H}_{\text{eff}}) + \frac{G}{\gamma M^2} \left[\vec{M} \times \frac{\partial \vec{M}}{\partial t} \right] \quad \text{with} \quad \alpha = \frac{G}{\gamma M}
\]

Thus it can be interpreted as a velocity-proportional viscous damping like in mechanical (Stokes) friction. The viscosity damps the Larmor precession, and the magnetization spirals into the \(z\) axis pointing to the surface of a sphere, that is, the length of \(\vec{M}\) stays constant but the expectation value \(\langle M_z \rangle\) increases if \(\beta \rightarrow 0\). This is indicated in Figure 9(b) as relaxation path 1. A uniform motion of the magnetization plus a viscous damping leads to a dissipation of energy into the thermal bath (path 1 in Figure 9(a) – an irreversible process. Two notations are commonly used in equation (11): (i) \(G\), the Gilbert-damping parameter, given as a relaxation rate in s\(^{-1}\), or (ii) the dimensionless parameter \(\alpha\) in analogy to the viscous damping. The relaxation rate per second \(G\) seems to be more instructive for easier comparison with other relaxation rates in the literature. As discussed in Section 2, standard EPR/FMR experiments use a fixed microwave frequency and scan the external Zeeman field \(H_0\). Under these conditions, the LLG (11) leads to a linewidth \(\Delta H_G\) depending linearly [4] on \(\omega\)

\[
\Delta H_G(\omega) \approx \frac{2}{\sqrt{3}} \frac{G}{\gamma^2 M^2 \cos \beta} \omega
\]

One example is shown in Figure 3 in which for 1 GHz experiments the linewidth for a 10 ML Ni film is very narrow in the range of 10–20 Oe, whereas for the most commonly used 10 GHz frequency the linewidth increases up to 200–250 Oe.

A second relaxation process is discussed in standard literature and indicated in Figure 9(c): The uniform motion of the magnetization (or switching the magnetization) may scatter into excited states of the magnetic subsystem (spin waves, Stoner excitations, magnon–magnon scattering, etc.) The projection of \(\vec{M}\) onto the \(z\) axis stays constant since the precessional energy is scattered into the transverse components \(M_x\) and \(M_y\). (For details see Sparks, 1964). These processes may be reversible and are indicated in Figure 9(a) as path 2. They are in full analogy with optical spectroscopy. In the long run, these excitations will also decay into the thermal bath as indicated by path 3. One may raise the question: Is there any experimental evidence for the appearance of this second relaxation process, that is, scattering within the magnetic subsystem, in magnetic nanostructures? The theoretical background to study this question is known for a long time. One possible model is described by the Bloch–Bloembergen equation (Bloembergen, 1950; Bloch, 1946)

\[
\frac{\partial \vec{M}}{\partial t} = -\gamma (\vec{M} \times \vec{H}_{\text{eff}}) - \frac{M_i}{T_2} \hat{\epsilon} - \frac{M_y}{T_2} \hat{\epsilon} - \frac{M_z - M_S}{T_1} \hat{\epsilon}
\]

\[
(13)
\]

Figure 9. Schematic illustration of different relaxation processes taken from Suhl (1998); Sparks (1964): (a) The uniform motion of the magnetization with \(k = 0\) in an FMR experiment may scatter with energy dissipation into the thermal bath (path 1). In path 2 it can also scatter into spin waves with \(k \neq 0\) – a reversible process. In the long run, this energy also travels along path 3 into the heat sink. (b) Depicts the LLG scenario from equation (11). (c) Shows the Bloch–Bloembergen process for spin–spin relaxation.
In this case, two different relaxation rates are introduced into the equation of motion (Abragam and Bleaney, 1966): the longitudinal relaxation rate T_1, that is, the direct path into the thermal bath, and the so-called transverse rate, T_2, by which energy is scattered into the transverse magnetization components M_x and M_y. This is depicted in Figure 9(c). The projection of \mathbf{M} on the effective field \mathbf{H}_{eff} stays constant and energy is scattered into the transverse components M_x and M_y. This is a dephasing of the former coherent rotation of the magnetization as discussed in the previous section. This scenario of a transverse relaxation rate is known, for example, Sparks (1964); Mills and Rezende (2003); Suhl (1998). Only very recently, Arias and Mills have calculated this type of magnon–magnon scattering in a quantitative manner for standard FMR experiments in ultrathin films (Arias and Mills, 1999, 2000) (see also Spin Waves: History and a Summary of Recent Developments, Volume 1). The result for the FMR linewidth is given below, with Γ as a parameter

$$\Delta H_{2M}(\omega) = \frac{1}{\sqrt{\omega^2 + (\omega_0/2)^2} - \omega_0/2}$$

(14)

It is obvious that the frequency dependence of the linewidth for magnon–magnon scattering is by no means linear. It saturates at very high frequency and starts with a steep slope at low frequencies (Figure 10). The first experimental evidence of a nonlinear $\Delta H(\omega)$ was reported for Fe/V nanostructure in Lindner et al. (2003) and for Fe/GaAs films, (Woltersdorf and Heinrich, 2004). Recently, the FMR linewidth of Fe/V multilayers has been measured and analyzed over a very large frequency range from 1 to 225 GHz as shown in Figure 10 (Lenz et al., 2006). Key information can be obtained from Figure 10: (i) FMR measurements at very low frequencies (1–4 GHz) unambiguously show that the linewidth narrows dramatically, that is to say ΔH is given by relaxation processes only. A practice used in the literature for earlier experiments between 9 and 36 GHz to assume a linear frequency dependence (Celinski and Heinrich, 1991), extrapolating from this, an apparent residual linewidth (the tangent crossing the y axis) does not always seem to be justified. (ii) For all in-plane orientations of the external field ([001] and [110]), one observes a nonlinear frequency dependence. In contrast, for \mathbf{H} normal to the film plane ([001], full triangles), a 100% linear frequency dependence is observed. This is in perfect agreement with the theoretical prediction in (Arias and Mills, 1999, 2000).

The authors of (Lenz et al., 2006) deduce a constant (independent of orientation) Gilbert damping of $\sim 0.7 \times 10^8 \text{s}^{-1}$ for these multilayers. Fitting equation (14) to the curved frequency dependence yields a magnon–magnon scattering rate of $\gamma \Gamma \approx 10–50$ larger than the Gilbert damping. Thus, experimental evidence is given that both relaxation mechanisms (longitudinal and transverse scattering) are active in magnetic nanostructures. A combination of magnon–magnon scattering, modeled by equations (13) and (14), and a viscous Gilbert damping described by equations (11) and (12) seems to give a better insight into the spin dynamics of ultrathin films. For the particular investigated systems, Fe/V multilayers and Fe films on GaAs, the magnon–magnon scattering of $1/T_2 \approx 10^8 \text{s}^{-1}$ seems to be about 2 orders of magnitude faster than the viscous Gilbert damping of $1/T_1 \approx 10^7 \text{s}^{-1}$.

4.2 Spin-pump effects in the FMR

Consider in Figure 11(a) that 3d magnetic moments of the FM are excited by a microwave radiation $h\nu$ and undergo a Larmor precession in an external field, equations (1) and (2). It is standard textbook reasoning that the local 3d moments are coupled to the sea of conduction electrons via the classical $s-d$ exchange interaction. In turn, the conduction band of the FM is hybridized with the conduction band of the NM. This classical $s-d$ exchange between spin waves and s electrons has been used by Janossy and coworkers (Silsbee et al., 1979; Monod and Janossy, 1977) to activate and enhance the Larmor precession in the NM conduction band, the so-called conduction electron spin resonance (CESR). Angular momentum is transferred to the conduction band and then transported into the NM. These authors used highest-purity Au as NM and were able to detect the spin current of the Au conduction band through micrometer thick Au. This has been monitored at the right-hand end of Figure 11(a) either as emitted
microwave radiation or by exciting another magnetic system. This is the basic mechanism called spin pumping in our days. Thus, angular momentum and energy are lost from the ferromagnetic film and transported to the NM (metal, semiconductor). In the frame of Figure 9(a), this can be seen as a dissipation of energy like path 1 in Figure 9(a). Recently, such a mechanism became of particular interest for magnetic nanostructures consisting of two ferromagnetic films separated by an NM spacer, see Figure 11(b). Such a scenario has been investigated theoretically in Tserkovnyak et al. (2002) and by others. Experimental evidence was given in Heinrich et al. (2003) for Fe/40 ML Au/Fe (see also Magnetic Ultrathin Films, Volume 4). The thickness of the spacer will be of particular interest. For a larger thickness, like 40 ML Au, there is no IEC between FM1 and FM2 – see Section 3.3. Only ballistic transport is possible for the spin current depending on the perfection of the spacer and its interfaces. For ultrathin spacer films of only a few monolayers, one expects also some IEC (see Section 3.3) influencing the FMR linewidth. Constructive or destructive interference phenomena and quantum well effects should be detectable in the spin current Is\(_{\text{pump}}\). In Section 3.3 we have seen that a trilayer consisting of two different ferromagnets (Ni and Co or two Ni films with different thickness) has two different (acoustic and optic) FMR modes. In Lenz et al. (2004) and Heinrich et al. (2003) first evidence is given that indeed the FMR linewidths influence each other when both resonance conditions coincide. Figure 11(c) shows the difference between the optic and acoustic linewidth \(\Delta H_{\text{opt}} - \Delta H_{\text{ac}}\) for Ni\(_9\)/Cu\(_{9}\)/Ni\(_9\) with an ultrathin spacer thickness of \(d_{\text{Cu}} = 2-8\) ML. On the left-hand side, the relative change in the linewidth normalized to the linewidth for a single film is plotted on a logarithmic scale, whereas on the right-hand side the energy scale for \(J_{\text{inter}}\) (dashed line) is shown. The broadening of the optical linewidth is the largest (more than a factor of 2) for the thinnest Cu spacer and the largest \(J_{\text{inter}}\). A clear oscillatory behavior for both linewidth and \(J_{\text{inter}}\) is observed as a function of \(d_{\text{Cu}}\).

5 SUMMARY, OUTLOOK

As discussed by several examples, microwave spectroscopy is a very useful technique to investigate ultrathin ferromagnetic films. It covers the ferromagnetic as well as the paramagnetic regime. It is sensitive to ferromagnetic as well as antiferromagnetic IEC in superstructures. The static resonance conditions, its angular and temperature dependence as well as the linewidth, yield reliable information on the static and dynamic parameters of ultrathin film magnetism. If the standard FMR technique is combined with state-of-the-art surface science and UHV technique, the combined UHV-FMR spectroscopy opens a new challenging research field to study the growth and crystallographic modifications, the electronic band structure, and the direct observation of the magnetism in one experiment. Such a complete set of experimental observables is the best input for a better theoretical description of the magnetism of magnetic nanostructures.

Standard FMR technique might have one drawback: the spectroscopy has no spatial resolution. The wavelength of the microwave ranges from millimeters to a few centimeters and the absorbed energy out of the microwave radiation is the macroscopic response of the whole specimen. A recent development to overcome this problem is to combine an STM or AFM tip with FMR. Several groups have developed this technique. A lateral resolution in the range of 10–100 nm was reached (Meckenstock et al., 2003; Meckenstock et al., 2004). Another interesting new development is the combination of synchrotron radiation and FMR. XMCD has the advantage of being element specific. XMCD also has access to orbital and spin magnetic moments. If this can be used to probe the change in the magnetization induced by the precession of magnetic moments, this X-ray-detected magnetic resonance (XDMR) is the analogue of the well-known optical-detected magnetic resonance (ODMR). First experimental results at the \(K\)-edge of Fe in a YIG crystal have been reported recently (Goulon et al., 2005). Also, the
A combination of an electronic network analyzer with FMR spectroscopy offers the possibility of studying the dynamics of magnetic nanostructures in the frequency as well as in the time (pulsed) domain (Counil et al., 2004).

Finally we point out recent advances in the theory of the FMR in ultrathin films: The vast majority uses a classical continuum model to interpret experimental spectra, where the classical LLG equation of motion for the magnetization or an expansion of the free energy is considered. Recently a microscopic Heisenberg Hamiltonian was used to directly calculate for FMR the spin-wave resonance modes and external resonance fields as a function of the field direction and as a function of temperature (Schwieger et al., 2005). Future work will provide better microscopic insight into the FMR of ultrathin films.

NOTES

[1] The FMR community uses a positive γ value, whereas in EPR the negative sign of the charge is taken into account.

[2] Note that many other experimental techniques like MOKE, spin-polarized PE, and so on, measure the magnetization in arbitrary units, only. MAE and IEC, for example, measured by FMR are given in absolute energy units per particle. These numbers are of interest for comparison with theory.

[3] This equation is strictly valid only for g-values close to two.

[4] Note that this linear frequency dependence is a consequence of the field-scanning technique in conventional FMR. For other experimental techniques at fixed magnetic field and scanning the microwave frequency or for Brillouin light scattering the analysis of the measured linewidth is different, see (Mills and Rezende, 2005). Caution has to be taken when comparing different experiments.

ACKNOWLEDGMENTS

The idea of EPR and FMR in metals and its combination with UHV technique was brought to our attention by S. H"ufner (FUB) and R. Orbach (UCLA). Discussions with H. Ebert, M. Farle, K. Lenz, J. Lindner, D.L. Mills, and R.Q. Wu are acknowledged. Special thanks is given to C. Sorg, E. Kosubek, and K. Lenz for their assistance in the preparation of the manuscript. Financial support was given over decades by the Deutsche Forschungsgemeinschaft DFG under the research grants Sfb 161, Sfb 6, and Sfb 290.

REFERENCES

APPENDICES

A UNITS
The history of ferromagnetism and magnetic anisotropy went different routes and was uncoupled from other areas of solid-state magnetism, unfortunately. As a consequence, the classification of magnetic anisotropy contributions used an expansion different from Legendre polynomial expansion in crystal-field theory. Moreover, as a consequence various units are used in the historical part of magnetoelasticity, namely, erg cm$^{-3}$ and erg cm$^{-2}$, that is to say energy per volume and area, respectively. Other parts of solid-state physics and, in particular, the theory prefers eV/atom, that is to say energy per particle (see also Theory of Magnetocrystalline Anisotropy and Magnetoelasticity in Transition-metal Systems, Volume 1). This newer notation started to be used in surface and thin-film magnetism and we strongly advocate it, since it facilitates communication with theory and gives an easier insight. For example, in thin-film magnetism Fe, Co, and Ni ions contribute equally strongly to the anisotropy energy, be it a surface atom or an atom in the inner part of a nanostructure, namely, 10–100 μeV/atom. In the older version it would read 1.5–15 × 106 erg cm$^{-3}$ for K' and 0.03–0.3 × 106 erg cm$^{-2}$ for K'', which is not so easy to compare. A transformation of the older into the newer notation is simply given by the atomic volume of the individual elements, for example, for fcc Ni, 106 erg cm$^{-3}$ corresponds to 6.83 μeV/atom or 7.38 μeV/atom for bcc Fe, respectively.

B NOTATION OF THE MAGNETIC ANISOTROPY ENERGY
The magnetic part of the free-energy density and its anisotropy in ultrathin ferromagnetic films has only two origins: (i) the dipole–dipole interaction, which depends on M and the shape of the specimen, (ii) all other contributions (crystalline MAE, magnetoelastic MAE, etc.) are caused by spin-orbit interaction or even better by a full relativistic treatment of the free-energy density. We recall that the exchange interaction $\vec{s}_1 \cdot \vec{s}_2$, the Heisenberg Hamiltonian, is completely isotropic, its energy levels do not depend on the direction in space in which the crystal is magnetized (Aharoni, 2000). The so-called anisotropic exchange is nothing but the anisotropy of the orbital magnetism projected to an effective spin space.

1. The dipole contribution: Mostly, a homogeneous dipole density is assumed with a dipolar field of $4\pi M$ and an energy density of $2\pi M^2$. For ultrathin films of a few monolayers only, this may not be completely appropriate. The dipolar field of a discrete lattice sum has been discussed elsewhere (Farle, 1998; Heinrich et al., 1987). The discrete sum of point dipoles delivers somewhat smaller values for the dipolar contribution but this may even be an underestimation because it is currently clear that for 3d or 4f ferromagnets a finite distribution of the magnetic moment density has been measured by means of neutron scattering. In conclusion, if the continuous dipole density ansatz is inadequate for magnetic monolayers or nanometer dots, the real value will be somewhat smaller but not as small as calculated from a lattice grid with point dipoles.

2. Spin-orbit effects: The experimentalist measures the total (or effective) magnetic anisotropy field or energy. Subtracting from this measured value a separately determined or calculated dipolar contribution, the remaining part is given by the spin-orbit-caused contribution and is commonly labeled with K_s. We do not advice to analyze the sum of the two contributions with K_{eff} because the temperature dependence of the dipolar contribution and the spin-orbit-caused anisotropy may be completely

APPENDICES

A UNITS
The history of ferromagnetism and magnetic anisotropy went different routes and was uncoupled from other areas of solid-state magnetism, unfortunately. As a consequence, the classification of magnetic anisotropy contributions used an expansion different from Legendre polynomial expansion in crystal-field theory. Moreover, as a consequence various units are used in the historical part of magnetoelasticity, namely, erg cm$^{-3}$ and erg cm$^{-2}$, that is to say energy per volume and area, respectively. Other parts of solid-state physics and, in particular, the theory prefers eV/atom, that is to say energy per particle (see also Theory of Magnetocrystalline Anisotropy and Magnetoelasticity in Transition-metal Systems, Volume 1). This newer notation started to be used in surface and thin-film magnetism and we strongly advocate it, since it facilitates communication with theory and gives an easier insight. For example, in thin-film magnetism Fe, Co, and Ni ions contribute equally strongly to the anisotropy energy, be it a surface atom or an atom in the inner part of a nanostructure, namely, 10–100 μeV/atom. In the older version it would read 1.5–15 × 106 erg cm$^{-3}$ for K' and 0.03–0.3 × 106 erg cm$^{-2}$ for K'', which is not so easy to compare. A transformation of the older into the newer notation is simply given by the atomic volume of the individual elements, for example, for fcc Ni, 106 erg cm$^{-3}$ corresponds to 6.83 μeV/atom or 7.38 μeV/atom for bcc Fe, respectively.

B NOTATION OF THE MAGNETIC ANISOTROPY ENERGY
The magnetic part of the free-energy density and its anisotropy in ultrathin ferromagnetic films has only two origins: (i) the dipole–dipole interaction, which depends on M and the shape of the specimen, (ii) all other contributions (crystalline MAE, magnetoelastic MAE, etc.) are caused by spin-orbit interaction or even better by a full relativistic treatment of the free-energy density. We recall that the exchange interaction $\vec{s}_1 \cdot \vec{s}_2$, the Heisenberg Hamiltonian, is completely isotropic, its energy levels do not depend on the direction in space in which the crystal is magnetized (Aharoni, 2000). The so-called anisotropic exchange is nothing but the anisotropy of the orbital magnetism projected to an effective spin space.

1. The dipole contribution: Mostly, a homogeneous dipole density is assumed with a dipolar field of $4\pi M$ and an energy density of $2\pi M^2$. For ultrathin films of a few monolayers only, this may not be completely appropriate. The dipolar field of a discrete lattice sum has been discussed elsewhere (Farle, 1998; Heinrich et al., 1987). The discrete sum of point dipoles delivers somewhat smaller values for the dipolar contribution but this may even be an underestimation because it is currently clear that for 3d or 4f ferromagnets a finite distribution of the magnetic moment density has been measured by means of neutron scattering. In conclusion, if the continuous dipole density ansatz is inadequate for magnetic monolayers or nanometer dots, the real value will be somewhat smaller but not as small as calculated from a lattice grid with point dipoles.

2. Spin-orbit effects: The experimentalist measures the total (or effective) magnetic anisotropy field or energy. Subtracting from this measured value a separately determined or calculated dipolar contribution, the remaining part is given by the spin-orbit-caused contribution and is commonly labeled with K_s. We do not advice to analyze the sum of the two contributions with K_{eff} because the temperature dependence of the dipolar contribution and the spin-orbit-caused anisotropy may be completely
different. The latter contribution, which is also called \(\Delta E_{\text{band}} \) in the \textit{ab initio} theory, is calculated from the band structure. It has anisotropic contributions in various spacial directions of the ferromagnet. To facilitate a comparison between different experimental results or comparison to theoretical \textit{ab initio} calculations we list below different notations. Owing to the pseudomorphic growth of ultrathin Fe, Co, Ni, and Gd films on cubic substrate crystals, one hardly has cubic symmetry in the ultrathin film but rather structures of tetragonal or lower symmetry.

\[
E_{\text{tet}} = -K_2 a_x^2 - \frac{1}{2} K_{4\perp} a_z^4 \\
- \frac{1}{2} K_{4\parallel} (a_x^4 + a_y^4) + \ldots
\]
\[
= -K_2 \cos^2 \theta - \frac{1}{2} K_{4\perp} \cos^4 \theta \\
- \frac{1}{2} K_{4\parallel} \left(3 + \cos 4\varphi \right) \sin^2 \theta + \ldots
\]
\[
E_{\text{hex}} = K_2 \sin^2 \theta + \frac{1}{2} K_{2\parallel} \cos 2\varphi \sin^2 \theta + K_4 \sin^4 \theta \\
+ K_{4\perp} \sin^6 \theta + K_{6\parallel} \cos 6\varphi \sin^6 \theta + \ldots
\]

In the preceding equations, the free-energy density is expanded in terms of trigonometric functions. Equation (A1a) used by Heinrich (1994) is identical to equation (A1b), which is given as a function of polar and azimuthal angles up to fourth order. Quite often this energy is expanded in a sine function with the same polar angle \(\theta \), given in equation (A1c). It is obviously clear that the prefactor \(K_2' \) of equation (A1c) is not identical to the one in equations (A1a) and (A1b) \((K_2' = K_2 + K_{4\perp}) \). Also, the fourth-order contributions differ. Moreover, quite often the MAE is measured only in two directions: the easy and hard axes. The total energy difference is projected onto the second-order \(\cos^2 \theta \) term – often labeled with \(K_\parallel \) for uniaxial MAE. For a proper determination of the various energy contributions, a full angular-dependent measurement is required including the field-dragging effect if the external field \(H_0 \) is not aligned parallel to the easy or hard axes. It is well established for ultrathin films that the fourth-order term \(K_{4\perp} \) is by no means small. Quite often it is in the same order of magnitude as \(K_2 \).

Less popular but maybe more instructive is the expansion of the free energy into spherical harmonics (Vonsovskii, 1974; Coqblin, 1977; Farle, 1998). Clearly, the terms with power \(\cos^n \) are grouped differently, resulting in different prefactors and their temperature dependence. For bulk ferromagnets the trigonometric expansion has been used mostly and the \(K_2, K_4, \) and \(K_6 \) contributions as a function of temperature are listed in the literature (Stearns, 1986). This temperature dependence with the oscillatory \(\pm \) values and zero crossings of the \(K(T) \) parameters will change completely and look different if one expands the measured energy in terms of Legendre polynomials (Farle, 1998).

For ultrathin films of 5–10 atomic layers measured by FMR, for example, each of these \(K_i \) parameters can be decomposed into contributions of volume \(K_i^v \) and surface/interface \(K_i^s \) (Farle, 1998; Baberschke, 2001) following the reasoning by Néel.

\[
K_i = K_i^v + 2K_i^s/d
\]