Towards Supercontinuum Spectroscopy and Control of Ultrafast Molecular Processes

Bruno. E. Schmidt, Shaohui Li, Oliver Gause, Juri Demuth, Waldemar Unrau and Torsten Siebert

Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14105 Berlin.

Elementary to the endeavor of manipulating the state of a molecular systems through the interaction with light is the capability to address the time scales as well as resonance conditions involved in driving a particular molecular process [1-5]. In view of this, the precision with which a molecular system can be controlled in its interference to a desired final state is largely determined by the bandwidth of the field driving the manipulation. The possibility of employing the octave-spanning radiation obtained from the filamentation of standard amplified femtosecond pulses in gaseous media is explored in this context [6]. The generation of white-light pulses and their compression to sub 7 femtosecond pulses in a single filamentation process in air is presented. The control over the full spectral bandwidth via a liquid crystal based modulation technique is demonstrated by the transcription of parametric phase functions in the construction of a desired pulse form. The spectroscopic application of this capability is further exemplified by an optimization of the spectral phase over the white-light envelope in a genetic algorithm controlled feedback loop. This was applied to driving the sequential electron photo-detachment and multi-photon ionization processes within the $Ag_3^{-70/+}$ system under the conditions of space-charge limited densities in a radio frequency ion trap. For this case, pulses composed of ultrashort substructures with a variable time sequence of different spectral components and a total duration spanning into the picosecond domain are obtained from the optimization. Accompanying this, the versatility of analyzing the synthesized pulse forms via a transient grating based four-wave mixing FROG is shown, with the capability to indiscriminately characterize octave spanning pulses with substructures ranging the lower femto- to picosecond domain in intuitive traces. The technique described above presents a general instrumentation for precision control of ultrafast molecular processes.

- [1] R.S. Judson, H. Rabitz, "Teaching lasers to control molecules" Phys. Rev. Lett. 68, 1500 (1992).
- [2] R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, D. J. Tannor, "Wavepacket Dancing: Achieving Chemical Selectivity by Shaping Light Pulses" Chem. Phys. 139, 201 (1989).
- [3] P. Brumer, M. Shapiro, "Laser Control of Molecular Processes" Annu. Rev. Phys. Chem. 43 257 (1992).
- [4] T. Baumert, J. Helbing, G. Gerber, L. Wöste, A. H. Zewail, J. Troe, J. Manz, T. Kobayashi, V. S. Letokhov, U. "Chemical Reactions
- and Their Control on the Femtosecond Time Scale" Solvay Conference on Chemistry, vol. 101, John Wiley and Sons; NewYork (1997).
 [5] Analysis and Control of Ultrafast Photoinduced Reactions, O. Kühn, L. Wöste (Eds.) Springer Series in Chemical Physics, vol. 87, Springer; Berlin (2007).
- [6] B. E. Schmidt, W. Unrau, A. Mirabal, S. Li, M. Krenz, L. Wöste, T. Siebert, "Poor man's source for sub 7 fs: a simple route to ultrashort laser pulses and their full characterization" *Opt. Express* 16, 18910 (2008).