TIME RESOLVED ALIGNMENT: FROM PARA-HYDROGEN CRYSTALS TO AMBIENT NITROGEN

Nina Owschimikow ${ }^{1}$, Falk Königsmann ${ }^{1}$, Phillip Giese ${ }^{1}$, Jochen Mauer ${ }^{1}$, Mizuho Fushitani ${ }^{1}$, David Anderson ${ }^{2}$, Nikolaus Schwentner ${ }^{1}$
${ }^{1}$ Department of Experimental Physics, Free University Berlin, 14195 Berlin, Germany;
${ }^{2}$ Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA;

Strong, linearly polarized laser pulses are widely used to induce alignment in molecules possessing an anisotropic polarizability. A short nonresonant pulse prepares a coherent superposition of rotational eigenstates, as a result of which $\left\langle\cos ^{2} \theta\right\rangle$ for the angle θ between polarization vector and molecular axis becomes time-dependent. The alignment induces birefringence and recording it between crossed polarizers (Optical Kerr Effect) provides a sensitive and convenient tool to detect the alignment dynamics. We demonstrate this in a collinear detection scheme using the fundamental of a Ti:sapphire laser for alignment and its second harmonic for probing [1].
At a field strength of about $10 \mathrm{TW} / \mathrm{cm}^{2}$ very large phase shifts between ordinary and extraordinary beam can be achieved due to the large interaction length. In a sample of nitrogen gas under ambient conditions they lead to ellipticity angles α of the order of 10 degrees. Good polarizers allow to resolve α down to 10^{-5}, thus a huge range is available to study quantitatively and in detail the dynamics. The revival period of N_{2} of about 8 ps provides an optimal clock to follow collisions, which occur for ambient pressure on a 100 ps time scale. We demonstrate that the phase dependent and the phase independent parts in θ enable to record the dephasing and the depopulation cross sections independently and we compare them with theoretical predictions and results from alternative experimental methods.
For pH_{2}-crystals at a temperature below the rotational energies the same technique reveals coherent oscillations as stimulated Raman-sidebands in the 94 fs range, which last for about 1000 periods. They originate from delocalized rotons and the subtle splitting into the three $|\mathrm{M}|$ sub-states leading in time frame to three components at $93.7,94.2$ and 94.8 fs , which can be resolved and are also visible in a beat pattern of 17 ps . These rotons appear together with a single-frequency oscillation with 900 fs period, originating from a delocalized lattice phonon. It strictly follows the Raman-selection rule and is long lived, lasting for several ten ps.

References

[1]. F. Königsmann, M. Fushitani, N. Owschimikow, D. Anderson, N. Schwentner, Chem. Phys. Lett. 2008, 458, 303.

