ATTOSECOND STEERING OF ELECTRONIC MOTION

R. Gopal¹, A. Rudenko², M. Kremer¹, B. Fischer¹, K. Simeonidis¹, R. Moshammer¹, Th. Ergler¹, M. Kurka¹, K.U. Kühnel¹, C. D. Schröter¹, D. Bauer¹, B. Feuerstein¹, V. L. B. de Jesus⁴, O. Herrwerth³, Th. Uphues³, M. Schultze³, E. Goulielmakis³, M. Uiberacker³, M. Lezius³, M. F. Kling³, J. Ullrich^{1,2}

¹Max-Planck-Institut für Kernphysik (MPIK), Saupfercheckweg 1, D-69117 Heidelberg ²Max Planck Advanced Study Group at CFEL, D-22607 Hamburg

³Max-Planck-Institut für Quantenoptik (MPQ), Hans-Kopfermann-Str. 1, D-85748 Garching ⁴ CFET de Química de Nilópolis, Rua Lucio Tavares 1045, Rio de Janeiro, Brazil

Using a reaction-microscope, three-dimensional electron and ion momentum (\vec{P}) spectra have been recorded for carrier-envelope-phase (CEP) stabilized few-cycle (~ 5-6 fs), intense (4·10¹⁴ W/cm²) laser pulses (740 nm) interacting with atoms and molecules. In a collaborative effort experiments on He atoms have been performed at the MPQ whereas the fragmentation of H₂ molecules was investigated at the new CEP stabilized pump-probe facility at the MPIK.

For He atoms preferential emission of low-energy electrons ($E_e < 15 \text{ eV}$) to either hemisphere is observed as a function of the CEP¹. Clear interference patterns emerge in \vec{P} -space at CEPs with maximum asymmetry, interpreted as attosecond holographic "self"-images of rescattered electron wave-packets by means of a simple model and in line with previous theoretical predictions². For H₂⁺ molecules we do observe, for the first time and different from earlier measurements³, electron localisation in the 1 ω and effective 2 ω fragmentation channels depending on the kinetic energy release (KER)⁴ in general agreement with but at better significantly better contrast than predicted by theory⁵. Moreover, we find the asymmetry varying as a function of the orientation of the molecules and inspect CEP dependent coincident electron emission from the first step, i.e. ionizing the H₂ molecule and starting the bound-state dynamics in H₂⁺. Finally, we present results of wave-packet dynamic calculations, show data for more complicated molecules and envision future directions.

¹ R. Gopal et al., Phys. Rev. Lett. (accepted)

²D.G. Arbó et al. Phys. Rev. A **74**, 063407 (2006).

³ M.F. Kling et al., *Science* **312** (2006) 246

⁴ M. Kremer et al., Phys. Rev. Lett. (submitted)

⁵ V. Roudnev and B. D. Esry, PRA **76**, 023403 (2007)