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We apply generic order parameter equations for the emergence of retinotopy between manifolds of different
geometry to one- and two-dimensional Euclidean and spherical manifolds. To this end we elaborate both
a linear and a nonlinear synergetic analysis which results in order parameter equations for the dynamics
of connection weights between two cell sheets. Our results for strings are analogous to those for discrete
linear chains obtained previously by Häussler and von der Malsburg. The case of planes turns out to be
more involved as the two dimensions do not decouple in a trivial way. However, superimposing two modes
under suitable conditions provides a state with a pronounced retinotopic character. In the case of spherical
manifolds we show that the order parameter equations provide stable stationary solutions which correspond to
retinotopic modes.A further analysis of higher modes furnishes proof that our model describes the emergence
of a perfect one-to-one retinotopy between two spheres.
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1 Introduction

In a preceding paper [1] we have analyzed a general model for the formation of retinotopic projections
which is independent of geometry and dimension. In this paper we present applications of the general
model, viz Euclidean and spherical geometries in one and two dimensions. To put these investigations into
perspective we briefly recall their physiological motivations. But let us stress at the outset that our primary
objective is not the biological modelling of retinotopic projections but the systematic analysis of a particular
model thereof from a nonlinear dynamics point of view. In the course of ontogenesis of vertebrate animals
well-ordered neural connections are established between retina and tectum, a part of the brain which plays
an important role in processing optical information. At an initial stage of ontogenesis, the ganglion cells of
the retina have random synaptic contacts with the tectum. In the adult animal, however, neighbouring retinal
cells project onto neighbouring cells of the tectum [2]. A detailed analytical treatment by Häussler and von
der Malsburg was able to describe the generation of such retinotopic states from an undifferentiated initial
state as a self-organization process [3]. In that work retina and tectum were treated as one-dimensional
discrete cell arrays. The dynamics of the connection weights between retina and tectum was assumed to be
governed by the Häussler-von der Malsburg equations which are based on modelling the interplay between
cooperative and competitive interactions of the individual synaptic contacts. The nonlinear analysis was
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Fig. 1 (online colour at: www.ann-phys.org) Retina and tectum are represented as manifolds MR and
MT , respectively, which are connected by positive connection weights w(t, r). The connectivity within
each manifold is represented by cooperativity functions cR(r, r′) and cT (t, t′).

performed using the methods of synergetics, which provides effective analytical methods to study self-
organization processes in complex systems [4,5].

Obviously, the description of cell sheets as linear chains with the same number of cells is an inadequate
approach to the real biological situation. In a preceding paper we generalized the underlying Häussler-von
der Malsburg equations to continuous manifolds of arbitrary geometry and dimension [1]. We performed
an extensive synergetic analysis of these generalized Häussler-von der Malsburg equations. The resulting
generic order parameter equations represented a central new result, and can now serve as a starting point to
analyze in detail the self-organized emergence of one-to-one mappings in cell arrays of different geometries.
A short review of our generalization of the Häussler-von der Malsburg equations and the results of the
corresponding synergetic analysis is provided in Sect. 2. In the subsequent two Sections we focus on one-
and two-dimensional Euclidean manifolds. We show in Sect. 3 that the treatment of strings yields results
which are analogous to those obtained for discrete linear chains in [3], i.e. our model includes the special
case discussed by Häussler and von der Malsburg. However, our synergetic analysis is more general. Instead
of discrete cell arrays with the same number of cells, we consider continuously distributed cells on strings
of different lengths [6]. Furthermore, we do not restrict our investigations to monotonically decreasing
cooperativity functions of strings. We investigate under what circumstances non-retinotopic modes become
unstable and destroy retinotopic order. We show in Sect. 4 that our generic order parameter equations
also provide a suitable framework to describe the emergence of retinotopy between planes. For a certain
superposition of two modes we demonstrate that taking into account the contribution of the higher modes
leads to a sharpening of the retinotopic character of the projection between the two cell sheets. Finally,
we analyse in Sect. 5 the formation of retinotopic projections for the biologically relevant situation of
spherical geometries, i.e. manifolds with positive constant curvature. It turns out that the case of spheres
exhibits remarkable similarities with the analysis of strings, especially regarding the generation of 1-1-
retinotopic projections.

2 The general model

To make the present paper self-contained, we briefly review the essential results of our general model for the
self-organized emergence of retinotopic projections between manifolds of different geometry in [1]. The
two cell sheets, retina and tectum, are represented by general manifolds MR and MT , respectively. Every
ordered pair (t, r) with t ∈ MT , r ∈ MR is connected by a connection weight w(t, r) as is illustrated in
Fig. 1. The equations of evolution of these connection weights are assumed to be given by a generalization
of the Häussler-von der Malsburg equations

ẇ(t, r) = f(t, r, w) − w(t, r)
2MT

∫
dt′ f(t′, r, w) − w(t, r)

2MR

∫
dr′ f(t, r′, w) , (1)
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where the first term on the right-hand side describes cooperative synaptic growth processes and the other
terms stand for corresponding competitive growth processes. Here MT , MR denote the magnitudes of the
manifolds, the total growth rates are defined by

f(t, r, w) = α+ w(t, r)
∫
dt′
∫
dr′cT (t, t′) cR(r, r′)w(t′, r′) , (2)

and α is the global growth rate of new synapses onto the tectum which represents the control parameter of
our system. The cooperativity functions cT (t, t′), cR(r, r′) represent the neural connectivity within each
manifold. We assume that they are positive, symmetric with respect to their arguments and normalized. The
cooperation strength depends on the distance between two points of the manifold. This requires a measure of
distance, i.e. metrics, which in turn define Laplace-Beltrami operators on the manifolds. Their eigenvalue
problems yield a complete orthonormal system ψλT

(t) , ψλR
(r), and the generalized Häussler-von der

Malsburg equations are most conveniently transformed to this new basis. For example, the cooperativity
functions are expanded in terms of these functions as follows:

cT (t, t′) =
∑
λT

fλT
ψλT

(t)ψ∗
λT

(t′) , cR(r, r′) =
∑
λR

fλR
ψλR

(r)ψ∗
λR

(r′) . (3)

The initial state of ontogenesis with randomly distributed synaptic contacts is described by the stationary
uniform solution of the generalized Häussler-von der Malsburg equations w0(t, r) = 1. Its stability is
analyzed by linearizing the Häussler-von der Malsburg equations (1) with respect to the deviation v(t, r) =
w(t, r) − w0(t, r). The resulting linearized equations read v̇(t, r) = L̂(t, r, v) with the linear operator

L̂(t, r, v) = −αv(t, r) +
∫
dt′
∫
dr′ cT (t, t′) cR(r, r′) v(t′, r′)

− 1
2MT

∫
dt′
[
v(t′, r) +

∫
dt′′

∫
dr′′ cT (t′, t′′) cR(r, r′′) v(t′′, r′′)

]

− 1
2MR

∫
dr′

[
v(t, r′) +

∫
dt′′

∫
dr′′ cT (t, t′′) cR(r′, r′′) v(t′′, r′′)

]
. (4)

The eigenvalue problem of the linear operator (4) is solved by the eigenfunctions

vλT λR
(t, r) = ψλT

(t)ψλR
(r) (5)

and the following spectrum of eigenvalues:

ΛλT λR
=




−α− 1 λT = λR = 0

−α+ 1
2 (fT

λT
fR

λR
− 1) λT = 0, λR �= 0;λR = 0, λT �= 0

−α+ fT
λT
fR

λR
otherwise.

(6)

The eigenvalue with the largest real part is given by Λmax = −α+ fT
λu

T
fR

λu
R

, where λu
T , λu

R denote all those
eigenvalues which could become unstable simultaneously. Thus, the instability takes place when the global
growth rate reaches its critical value αc = Re (fT

λu
T
fR

λu
R
).

The linear stability analysis motivates to treat the nonlinear Häussler-von der Malsburg equations (1) near
the instability by decomposing the deviation v(t, r) = w(t, r)−w0(t, r) in unstable and stable contributions
according to v(t, r) = U(t, r) + S(t, r). With Einstein’s sum convention we have for the unstable modes

U(t, r) = Uλu
T λu

R
ψλu

T
(t)ψλu

R
(r) , (7)
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and, correspondingly,

S(t, r) = SλT λR
ψλT

(t)ψλR
(r) (8)

represents the contribution of the stable modes. Note that the summation in (8) is performed over all
parameters (λT ;λR) except for (λu

T ;λu
R), i.e. from now on the parameters (λT ;λR) stand for the stable

modes alone. With the help of the slaving principle of synergetics the original high-dimensional system can
be reduced to a low-dimensional one which only contains the unstable amplitudes. The general form of the
resulting order parameter equations is independent of the geometry of the problem and reads

U̇λu
T λu

R
= Λλu

T λu
R
Uλu

T λu
R

+A
λu

T ,λu
T

′λu
T

′′

λu
R,λu

R
′λu

R
′′ Uλu

T
′λu

R
′ Uλu

T
′′λu

R
′′

+Bλu
T ,λu

T
′λu

T
′′λu

T
′′′

λu
R,λu

R
′λu

R
′′λu

R
′′′Uλu

T
′λu

R
′ Uλu

T
′′λu

R
′′ Uλu

T
′′′λu

R
′′′ . (9)

It contains, as is typical, a linear, a quadratic, and a cubic term of the order parameters. The corresponding
coefficients can be expressed in terms of the expansion coefficients fλT

, fλR
of the cooperativity functions

(3) and integrals over products of the eigenfunctions ψλT
(t), ψλR

(r):

Iλ
λ(1)λ(2)...λ(n) =

∫
dxψ∗

λ(x)ψλ(1)(x)ψλ(2)(x) . . . ψλ(n)(x) , (10)

Jλ(1)λ(2)...λ(n) =
∫
dxψλ(1)(x)ψλ(2)(x) . . . ψλ(n)(x) . (11)

The quadratic coefficients read

A
λu

T ,λu
T

′λu
T

′′

λu
R,λu

R
′λu

R
′′ = fλu

T
′′ fλu

R
′′ I

λu
T

λu
T

′λu
T

′′ I
λu

R

λu
R

′λu
R

′′ , (12)

whereas the cubic coefficients are

B
λu

T ,λu
T

′λu
T

′′λu
T

′′′

λu
R,λu

R
′λu

R
′′λu

R
′′′ = − 1

2
fλu

T
′′′ fλu

R
′′′

(
1
MR

I
λu

T

λu
T

′λu
T

′′λu
T

′′′ δλu
Rλu

R
′ Jλu

R
′′λu

R
′′′ +

1
MT

I
λu

R

λu
R

′λu
R

′′λu
R

′′′δλu
T λu

T
′

×Jλu
T

′′λu
T

′′′

)
+
{[
fλT

fλR
+ fλu

T
′ fλu

R
′
]
I

λu
T

λu
T

′λT
I

λu
R

λu
R

′λR
− 1

2

[
1√
MT

δλT 0 δλu
T λu

T
′ (1 + fλR

) Iλu
R

λu
R

′λR

+
1√
MR

δλR0 δλu
Rλu

R
′ (1 + fλT

) Iλu
T

λu
T

′λT

]}
HλT λR

λu
T

′′λu
R

′′,λu
T

′′′λu
R

′′′ . (13)

As is common in synergetics, the cubic coefficients (13) consist in general of two parts, one stemming from
the order parameters themselves and the other representing the influence of the center manifold H on the
order parameter dynamics according to

SλT λR
= HλT λR

λu
T λu

R,λu
T

′λu
R

′ Uλu
T λu

R
Uλu

T
′λu

R
′ . (14)

Here the center manifold coefficients HλT λR

λu
T λu

R,λu
T

′λu
R

′ are defined by

HλT λR

λu
T λu

R,λu
T

′λu
R

′ =
fλu

T
′ fλu

R
′

Λλu
T λu

R
+ Λλu

T
′λu

R
′ − ΛλT λR

[
IλT

λu
T λu

T
′ I

λR

λu
Rλu

R
′

− 1
2

(
1√
MT

Jλu
T λu

T
′ IλR

λu
Rλu

R
′ δλT 0 +

1√
MR

Jλu
Rλu

R
′ IλT

λu
T λu

T
′ δλR0

)]
. (15)

The order parameter equations (9) for the generalized Häussler-von der Malsburg equations (1) can now
serve as a starting point for analysing the self-organized formation of retinotopic projections between
manifolds of different geometry.

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 16, No. 5 – 6 (2007) 399

3 Strings

In this section we specialize the generic order parameter equations (9) to one-dimensional Euclidean mani-
folds of strings with different lengths LT and LR. We start with introducing the eigenfunctions in Sect. 3.1.
In Sect. 3.2 we observe that the quadratic term vanishes and derive selection rules for the appearance of
cubic terms. In this way we essentially simplify the calculation of order parameter equations as compared
with [3]. Furthermore, we show that the order parameter equations represent a potential dynamics, and
determine the underlying potential in Sect. 3.3. A subsequent transformation from complex to real order
parameters in Sect. 3.4 leads to constant phase-shift angles. Thus, in Sect. 3.5 we reduce the order parameter
dynamics to two variables which correspond to the amplitudes of two diagonal modes. These two modes
compete with each other, until one of them vanishes. Within the potential picture this means that the stable
uniform state becomes unstable and the system settles in one of the two potential minima, as is discussed
in Sect. 3.7. After one of the diagonal modes has won, only such modes are excited which contribute to the
sharpening of the diagonal. Approximately solving the Häussler-von der Malsburg equations in Sect. 3.8
leads to the following scenario: Above a critical global growth rate αc the uniform state w0(t, r) = 1 is
stable. By decreasing the control parameter α, the projection gets sharper and sharper. Finally, if there is no
global growth rate of new synapses any more, i.e. α = 0, the connection weights are given by Dirac’s delta
function. Thus, a perfect one-to-one retinotopic state is realized. We conclude this discussion of strings with
comparing our results with the corresponding analysis of discrete linear chains in Sect. 3.9.

3.1 Eigenfunctions

The magnitudes of the manifolds MT and MR are given by MT = LT and MR = LR, respectively.
To avoid problems at the boundaries, we assume periodic boundary conditions, i.e. we consider retina and
tectum to be rings with circumferences LT and LR, respectively. The eigenvalue problem of the Laplace-
Beltrami operator for both manifolds reads

∂2

∂x2 ψλ(x) = χλψλ(x) , (16)

with x = t, r, respectively. Using the boundary condition ψλ(x) = ψλ(x+L), this is solved by the eigen-
functions

ψλ(x) =
1√
L

exp
(
i
2π
L
λx

)
, (17)

where the eigenvalues are given by χλ = −4π2λ2/L2, with x ∈ [0, L) and λ = 0,±1,±2, . . . . Every
eigenvalue χλ, apart from the special case χ0 = 0, is two-fold degenerate. The eigenfunctions form a
complete orthonormal system:

L∫

0

dxψλ(x)ψ∗
λ′(x) = δλλ′ ,

∞∑
λ=−∞

ψλ(x)ψ∗
λ(x′) = δ(x− x′) . (18)

Note that the orthonormality relation in (18) follows directly by inserting (17), whereas the completeness
relation is proven by taking into account the Poisson formula [7]. The cooperativity functions only depend
on the distance, which is given by the Euclidean distance |x−x′|, i.e. c(x, x′) = c(x−x′). Their expansion
in terms of the eigenfunctions (17) corresponds to the Fourier series

c(x− x′) =
1
L

∞∑
λ=−∞

fλ exp
[
i
2π
L
λ
(
x− x′)] . (19)

The expansion coefficients fλ are independent of the sign of the parameters λ, i.e. fλ = f−λ, as the
cooperativity functions are symmetric with respect to their arguments: c(x− x′) = c(x′ − x).
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3.2 Synergetic analysis

To specialize the order parameter equations (9) to the case of strings, we have to determine the integrals
(10) and (11) of products of eigenfunctions. With (17) we obtain

Iλ
λ(1)λ(2)... λ(n) =

(
1√
L

)n−1

δλ(1)+λ(2)+...+λ(n),λ , (20)

Jλ(1)λ(2)... λ(n) =
(

1√
L

)n−2

δλ(1)+λ(2)+...+λ(n),0 . (21)

From these results one can immediately read off the special cases

Iλ
λ′ λ′′ =

1√
L
δλ′+λ′′,λ , Iλ

λ′ λ′′ λ′′′ =
1
L
δλ′+λ′′+λ′′′,λ , Jλ′ λ′′ = δλ′,−λ′′ . (22)

In (12) the first integral of (22) occurs only with unstable values of λ. As they can only differ by their sign, it

followsλ′+λ′′ �= λ. Thus, we have Iλ
λ′ λ′′ = 0, i.e. the quadratic term (12) in (9) vanishes:Aλu

T ,λu
T

′λu
T

′′

λu
R,λu

R
′λu

R
′′ = 0.

To arrive at a more concise representation, we split the cubic contribution in (9) in two terms according to

B
λu

T ,λu
T

′λu
T

′′λu
T

′′′

λu
R,λu

R
′λu

R
′′λu

R
′′′Uλu

T
′λu

R
′ Uλu

T
′′λu

R
′′ Uλu

T
′′′λu

R
′′′ = K1,λu

T λu
R

+K2,λu
T λu

R
. (23)

The first term K1 takes into account the contribution of the order parameters themselves, while the second
term K2 represents the influence of the center manifold on the order parameter dynamics. Applying the
integrals (22) leads to selection rules for the appearance of cubic terms. It turns out that only those sums
lead to non-vanishing contributions where the sum of three unstable modes λu′

+λu′′
+λu′′′

coincides with
another unstable mode λu′

. Thus, both for retina and tectum only the following combinations are allowed:
(λu′

, λu′′
, λu′′′

) = (λu, λu,−λu) , (λu,−λu, λu) , (−λu, λu, λu) . With this selection rule the first cubic
term is given by

K1,λu
T λu

R
= −

fT
λu

T
fR

λu
R

2LTLR

[
Uλu

T λu′
R
Uλu′′

T λu′′
R
U−λu′′

T λu′′′
R
δλu′

R +λu′′
R +λu′′′

R ,λu
R

+Uλu′
T λu

R
Uλu′′

T λu′′
R
Uλu′′′

T −λu′′
R
δλu′

T +λu′′
T +λu′′′

T ,λu
T

]
(24)

and the second cubic term reads

K2,λu
T λu

R
=
Hλ′

T λ′
R,λu′′

T λu′′
R λu′′′

T λu′′′
R√

LTLR

Uλu′
T λu′

R
Uλu′′

T λu′′
R
Uλu′′′

T λu′′′
R

{
(fT

λ′
T
fR

λ′
R

+ fT
λu

T
fR

λu
R
)δλu′

T +λ′
T ,λu

T

×δλu′
R +λ′

R,λu
R

− 1
2

[
(1 + fR

λ′
R
)δλu′

R +λ′
R,λu

R
δλ′

T 0δλu′
T λu

T
+ (1 + fT

λ′
T
)δλu′

T +λ′
T ,λu

T
δλ′

R0δλu′
R λu

R

]}
. (25)

The latter depends on the center manifold, which follows from (15), and (22) to be

HλT λR,λu′′
T λu′′

R λu′′′
T λu′′′

R
=

fT
λu

T
fR

λu
R√

LTLR

(
2Λλu

T λu
R

− ΛλT λR

)
[
δλu′′

T +λu′′′
T ,λT

δλu′′
R +λu′′′

R ,λR

− 1
2

(
δλu′′

T ,−λu′′′
T
δλu′′

R +λu′′′
R ,λR

δλT 0 + δλu′′
R ,−λu′′′

R
δλu′′

T +λu′′′
T ,λT

δλR0

)]
. (26)
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3.3 Complex order parameters

We can therefore conclude that the order parameter equations for strings have the form

U̇λu
T λu

R
= hλu

T λu
R
(U,U∗) (27)

with the complex function

hλu
T λu

R
(U,U∗) = Λλu

T λu
R
Uλu

T λu
R

+Aλu
T λu

R
U2

λu
T λu

R
U−λu

T −λu
R

+Bλu
T λu

R
Uλu

T λu
R
U−λu

T λu
R
Uλu

T −λu
R
. (28)

Here we have introduced the coefficients

Aλu
T λu

R
= − γ

LTLR

(
2 − γ + γ2λu

T ,2λu
R

2Λλu
T λu

R
− Λ2λu

T ,2λu
R

)
, (29)

Bλu
T λu

R
= − γ

LTLR

[
4 − γ + (γ2λu

T ,0 − 1)/2
2Λλu

T λu
R

− Λ2λu
T ,0

− γ + (γ0,2λu
R − 1)/2

2Λλu
T λu

R
− Λ0,2λu

R

]
(30)

with the abbreviations γλT λR := fT
λT
fR

λR
and γ := γλu

T ,λu
R = fT

λu
T
fR

λu
R

. Now we turn to the question
whether the order parameter equations (27) represent a potential dynamics. To this end we derived in [8] a
condition for the order parameter equations which allows one to conclude whether or not such a potential
exists. The potential criterion reads

∂hλu
T λu

R
(U,U∗)

∂Uλu′
T λu′

R

=
∂h∗

λu′
T λu′

R

(U,U∗)

∂U∗
λu

T λu
R

, (31)

which is, indeed, fulfilled for (28). Furthermore, we derived in [8] the following conditions for determining
the underlying potential:

U̇λu
T λu

R
= − 1

2
∂V (U,U∗)
∂U∗

λu
T λu

R

. (32)

Integrating (32) yields the potential

V (U,U∗) = −2Λλu
T λu

R

(
Uλu

T λu
R
U−λu

T −λu
R

+ U−λu
T λu

R
Uλu

T −λu
R

)

−Aλu
T λu

R

(
U2

λu
T λu

R
U2

−λu
T −λu

R
+ U2

−λu
T λu

R
U2

λu
T −λu

R

)

−2Bλu
T λu

R
Uλu

T λu
R
U−λu

T −λu
R
U−λu

T λu
R
Uλu

T −λu
R
. (33)

3.4 Real order parameters

For technical purposes it has turned out to be useful to work with complex order parameters so far. However,
in order to investigate their contribution to a one-to-one mapping between the strings, we have to transform
them to real variables. We construct at first the real modes from the eigenfunctions (5), (17) of the linear
operator L̂ according to

cλT λR
(t, r) =

1
2

[vλT λR
(t, r) + v−λT −λR

(t, r)] =
1√

LTLR

cos
(

2π
LT

λT t+
2π
LR

λRr

)
, (34)

sλT λR
(t, r) = − i

2
[vλT λR

(t, r) − v−λT −λR
(t, r)] =

1√
LTLR

sin
(

2π
LT

λT t+
2π
LR

λRr

)
. (35)
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These two modes span a real subspace. If we set

a = ρ cosψ , b = ρ sinψ ; ρ ≥ 0 , ψ ∈ (−π, π] , (36)

the following relation results:

a cλT λR
(t, r) + b sλT λR

(t, r) = ρ cos
(

2π
LT

λT t+
2π
LR

λRr − ψ

)
. (37)

Thus, the subspace consists of all phase-shifted functions of ρcλT λR
(t, r). Then the modes belonging to

the unstable eigenvalue (λu
T , λ

u
R) are given by the modes cλu

T λu
R
(t, r) and cλu

T −λu
R
(t, r) as well as all phase-

shifted functions. Rewriting the unstable part (7)

U(t, r) = Uλu
T λu

R
vλu

T λu
R
(t, r) + U−λu

T −λu
R
v−λu

T −λu
R
(t, r)

+Uλu
T −λu

R
vλu

T −λu
R
(t, r) + U−λu

T λu
R
v−λu

T λu
R
(t, r) (38)

to real modes (34), (35), leads to

U(t, r) = u1cλu
T λu

R
(t, r) + u2sλu

T λu
R
(t, r) + u3cλu

T −λu
R
(t, r) + u4sλu

T −λu
R
(t, r) , (39)

with real variables uj :

Uλu
T λu

R
= (u1 − iu2)/2 , U−λu

T −λu
R

= (u1 + iu2)/2 ,

Uλu
T −λu

R
= (u3 − iu4)/2 , U−λu

T λu
R

= (u3 + iu4)/2 . (40)

Inserting the transformations (40) into the complex potential (33), we obtain the following real potential

V (ui) = − Λλu
T λu

R

2
(u2

1 + u2
2 + u2

3 + u2
4) − Aλu

T λu
R

16

[(
u2

1 + u2
2
)2

+
(
u2

3 + u2
4
)2]

−Bλu
T λu

R

8
(u2

1 + u2
2)(u

2
3 + u2

4) . (41)

The corresponding equations of evolution for the real order parameters are determined from (41) according
to u̇j = −∂V (ui)/∂uj . They read explicitly

u̇1 =
[
Λλu

T λu
R

+
Aλu

T λu
R

4
(u2

1 + u2
2) +

Bλu
T λu

R

4
(u2

3 + u2
4)
]
u1 ,

u̇2 =
[
Λλu

T λu
R

+
Aλu

T λu
R

4
(u2

1 + u2
2) +

Bλu
T λu

R

4
(u2

3 + u2
4)
]
u2 ,

u̇3 =
[
Λλu

T λu
R

+
Aλu

T λu
R

4
(u2

3 + u2
4) +

Bλu
T λu

R

4
(u2

1 + u2
2)
]
u3 ,

u̇4 =
[
Λλu

T λu
R

+
Aλu

T λu
R

4
(u2

3 + u2
4) +

Bλu
T λu

R

4
(u2

1 + u2
2)
]
u4 . (42)

3.5 Constant phase shift angles

According to eq. (37) the unstable part (39) can be written as a superposition of two diagonal modes of
different orientation

U(t, r) = ξ cos
[

2π
LT

λu
T t+

2π
LR

λu
Rr − ψ

]
+ η cos

[
2π
LT

λu
T t− 2π

LR
λu

Rr − ϕ

]
(43)
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(λu
T , λu

R) = (1, 1) (λu
T , λu

R) = (1,−1)

t

r−LT

2

LT

2
−LR

2

LR

2

0

0

t

r−LT

2

LT

2
−LR

2

LR

2

0

0

Fig. 2 Diagonal modes of different orientation according to (43) for the case (λu
T , λ

u
R) = (1, 1) and (1,−1),

respectively. Here the phase shifts are set to ψ = ϕ = 0.

as is illustrated in Fig. 2. With (36) and (37) we have u1 = ξ cosψ , u2 = ξ sinψ , u3 = η cosϕ , u4 =
η sinϕ . Then the amplitudes of the phase-shift diagonal modes read

ξ =
√
u2

1 + u2
2 , η =

√
u2

3 + u2
4 (44)

and the phase angles are given by tanψ = u1/u2 , tanϕ = u3/u4 .From the order parameter equations (42)
it follows u̇1/u̇2 = u1/u2 , u̇3/u̇4 = u3/u4 . Thus, performing a separation of variables and a subsequent
integration leads to the relation u1/u2 = const , u3/u4 = const . Consequently, the four real equations
(42) are reduced to two equations for the mode amplitudes ξ and η:

ξ̇ =
(

Λλu
T λu

R
+
Aλu

T λu
R

4
ξ2 +

Bλu
T λu

R

4
η2
)
ξ ,

η̇ =
(

Λλu
T λu

R
+
Aλu

T λu
R

4
η2 +

Bλu
T λu

R

4
ξ2
)
η . (45)

The corresponding potential is

V (ξ, η) = − Λλu
T λu

R

2
(ξ2 + η2) − Aλu

T λu
R

16
(ξ4 + η4) − Bλu

T λu
R

8
ξ2η2 . (46)

Thus, we have reduced the four complex order parameter equations (27), (28) to two real order parameter
equations (45) with the potential (46).

3.6 Monotonous cooperativity functions

So far our considerations are valid for arbitrary unstable modes (λu
T , λ

u
R) . According to the eigenvalue

spectrum (6) the unstable modes are determined by the expansion coefficients fλ of the cooperativity
functions. We therefore derive in this subsection some basic properties of these coefficients. In particular,
we investigate the consequences of monotonically decreasing cooperativity functions for their expansion
coefficients fλ. As c(x) is positive and normalized, we conclude |fλ| ≤ 1. Using the Euler formula, the
symmetry c(x) = c(−x), and integrating by parts, the expansion coefficients can be written in the form

fλ = − L

πλ

L/2∫

0

c ′(x) sin
(

2π
L
λx

)
dx , (47)
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V (ξ, η)

ξ

η

ξ

η

0

0

Fig. 3 (online colour at: www.ann-phys.org) The potential V (ξ, η) according to eq. (49) with Λ > 0. The
originally stable state ξ = η = 0 becomes unstable. The system settles into one of the two minima, i.e. one
of the two modes vanishes. The right plot shows the equipotential lines. Dark grey values correspond to small
values of the potential V .

which makes the symmetry fλ = f−λ manifest. If we assume monotonically decreasing cooperativity
functions, i.e. dc/dx < 0 for x ∈ [0, L/2], we obtain f1 > 0. Furthermore, we can show that f1 is the
largest expansion coefficient by considering the expression

f1 − fλ = −L

π

L/2∫

0

c ′(x)
[
sin

(
2π
L
x

)
− 1
λ

sin
(

2π
L
λx

)]
dx . (48)

Because of c ′(x) < 0 it follows indeed f1 − fλ > 0 ∀λ �= 0,±1. Together with |fλ| < 1 the maximum
eigenvalue of (6) results to be Λmax = −α + fT

1 f
R
1 . Hence in this case there are four unstable modes

(λu
T , λ

u
R) = (±1,±1), which corresponds to the result obtained in [3]. However, the most fundamental

insight of our more general analysis is that the real order parameter equations (45) are also valid in the case
where the cooperativity functions are not monotonic so that any mode (λu

T , λ
u
R) can become unstable. It is

plausible that there is a pathological development in animals which corresponds to this case.

3.7 Potential properties

We now analyze the properties of the potential (46). For this purpose we restrict ourselves from now on to
the unstable modes (λu

T , λ
u
R) = (±1,±1), whose indices will be discarded for the sake of simplicity. Then

the potential (46) reads

V (ξ, η) = − Λ
2

(ξ2 + η2) − A

16
(ξ4 + η4) − B

8
ξ2η2 , (49)

where the coefficients A, B follow from (29), (30) to be

A = − γ

LTLR

(
2 − γ + γ2,2

2Λ − Λ2,2

)
, (50)

B = − γ

LTLR

[
4 − γ + (γ2,0 − 1)/2

2Λ − Λ2,0
− γ + (γ0,2 − 1)/2

2Λ − Λ0,2

]
. (51)

From the condition ∇V = 0 we determine the extrema of V (ξ, η) and assign them to a minimum, a
maximum, or a saddle point. In the unstable region with Λ > 0 the potential V (ξ, η), which is depicted in
Fig. 3, has

c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.ann-phys.org



Ann. Phys. (Leipzig) 16, No. 5 – 6 (2007) 405

• a relative maximum at P1(0, 0) ,

• two relative minima at P2(0,
√−4Λ/A) and P3(

√−4Λ/A, 0) ,

• a saddle point at P4(
√−4Λ/(A+B),

√−4Λ/(A+B)) .

In the stable region with Λ < 0 only the relative minimum ξ = η = 0 does exist. Initially, the system is in
the stable uniform state w0(t, r) = 1. This state becomes unstable if the control parameter α is decreased
to the critical value αc = fT

1 f
R
1 . The eigenvalue Λmax = −α+ fT

1 f
R
1 becomes positive, and the minimum

passes into a maximum. The system settles into one of the two equivalent minima, i.e. a symmetry breaking
takes place. Thereby the two modes compete with each other and, subsequently, one of the two modes
vanishes. Which of them vanishes depends on the initial conditions of ξ and η. If the condition η(0) > ξ(0)
is fulfilled, the ξ-mode vanishes, and vice versa.

3.8 One-to-one retinotopy

In the following we assume that, according to the potential dynamics discussed above, only one of the two
modes remains. These two modes show a pronounced maximum for t = −r and t = r, respectively, as
is shown in Fig. 2. To assess the influence of higher modes, we calculate the center manifold S(U) for the
case ξ = 0 and η �= 0 and set u4 = 0 without loss of generality. Then it follows from (44) that η = u3, and
we obtain for the unstable part (39)

U(t, r) = η cos
(

2π
LT

t− 2π
LR

r

)
. (52)

With the center manifold (26) the stable part (8), (14) reads explicitly

S(U) =
2γ√

LTLR

(
2Λ − Λ2,2

) η2 cos
(

4π
LT

t− 4π
LR

r

)
. (53)

Thus, those modes are excited which strengthen the retinotopic character of the projection. With the help
of the complex modes it can be seen that this is also the case for higher modes, i.e. for (λu

T , λ
u
R) = (1, 1)

exclusively the modes (2, 2), (3, 3) etc. are excited, which are depicted in Fig. 4. Therefore, we follow [3]
and use an ansatz which contains only diagonal modes and insert it into the Häussler-von der Malsburg
equations (1). If we restrict ourselves to special cooperativity functions, the resulting recursion relations can
be solved analytically by using the method of generating function. Note that our derivation of the solution
of the recursion relations corresponds to the gravitating chain in [3].

3.8.1 Recursion relations

Motivated by the above remarks we investigate the Häussler-von der Malsburg equations for strings with
the ansatz

w(t, r) =
√
LTLR

∞∑
λ=−∞

wλvλ,−λ(t, r) , (54)

where vλ,−λ(t, r) is defined by (5) and (17). Thus, taking into account the decomposition (19) of the
cooperativity functions, the Häussler-von der Malsburg equations (1) can be written as

ẇ(t, r) = −α[w(t, r) − 1] + w(t, r)
√
LTLR

∞∑
λ=−∞

wλf
T
λ f

R
λ vλ,−λ(t, r) − p(w)w(t, r) , (55)
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(λu
T , λu

R) = (2, 2) (λu
T , λu

R) = (3, 3)

t

r−LT

2

LT

2
−LR

2

LR

2

0

0

t

r−LT

2

LT

2
−LR

2

LR

2

0

0

Fig. 4 Higher diagonal modes, which are excited by the unstable mode (λu
T , λ

u
R) = (1, 1) of Fig. 2. They

amplify the retinotopic character of the (1, 1)-mode.

where we have introduced the abbreviation

p(w) =
∞∑

λ=−∞
w−jwjf

T
j f

R
j . (56)

Inserting the ansatz (54) into (55) and comparing the coefficients of the linearely independent functions
vλ,−λ(t, r) yields

ẇ0 = − [α+ p(w)] (w0 − 1) , (57)

ẇλ = − [α+ p(w)]wλ +
∞∑

j=−∞
wλ−jwjf

T
j f

R
j , λ �= 0 . (58)

As w(t, r) is positive [1], we obtain that p(w) > 0 and α + p(w) > 0. Therefore, the stationary state is
determined from (57) to be w0 = 1.

3.8.2 Special cooperativity functions

We restrict our further considerations to the following form of the cooperativity functions (19): f0 =
1 , f1 �= 0 , fj = 0 for j �= 0,±1. With the abbreviation γ := fT

1 f
R
1 the previous result (56) can be written

as p(w) = 1 + 2γw1w−1, so that the eqs. (58) for the stationary case reduce to the recursion relation

(α+ 2γw2
1)wλ = γw1(wλ−1 + wλ+1) , λ �= 0 . (59)

3.8.3 Generating Function

To solve the recursion relation (59), we define the generating function

E(z) =
∞∑

λ=−∞
wλz

λ . (60)

Multiplying (59) with zλ+z−λ and performing the sum from λ = 1 up to infinity yields to a linear algebraic
equation which is solved by

E(z) =
α

α+ 2γw2
1 − γw1 (z + z−1)

. (61)
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Fig. 5 Decreasing the control parameter α to smaller val-
ues, we read off from (64) and (65) that the connection weight
converges to Dirac’s delta function (66).

To determine the coefficients wλ we expand the generating function (61) into a Taylor series:

E(z) = − α(
α+ 2γw2

1

)
w
(
z1 − z−1

1

)
[ ∞∑

λ=1

zλ
1 (zλ + z−λ) + 1

]
, |z1| < |z| < |z1|−1 (62)

with the abbreviations

w =
γw1

α+ 2γw2
1
, z1 =

1
2w

(1 +
√

1 − 4w2 ) . (63)

Comparing (62) with (60) by taking into account w0 = 1 determines w1 to be

w1 =
√
γ − α

γ
. (64)

Thus, together with (63) it follows z1 = w1, and the remaining coefficients turn out to bewλ = w
|λ|
1 , which

is valid not only for λ �= 0 but also for λ = 0 due to w0 = 1.

3.8.4 Limiting cases

By inserting the latter result into (54) we obtain

w0(t, r) =
1 − w2

1

1 − 2w1 cos
(

2π
LT
t− 2π

LR
r
)

+ w2
1

. (65)

For w1 = 0 the stationary uniform state reduces to w0(t, r) = 1 ∀t ∈ [0, LT ) , r ∈ [0, LR). In the case
w1 = 1, i.e. wλ = 1 ∀λ, we find with the help of the Poisson formula [7]

w0(t, r) = δ

(
t

LT
− r

LR

)
. (66)

Hence we have a situation which is illustrated in Fig. 5: If the control parameterα is in the neighborhood of γ,
the connection weight is essentially uniform with a small maximum for t/LT = ±r/LR. Further decreasing
ofα leads to a sharpening of the projection. In the caseα → 0 the projection becomes Dirac’s delta function,
i.e. a perfect one-to-one retinotopy is achieved. This means that the undifferentiated growth of new synaptic
contacts comes to an end when the ordered projection between retina and tectum is fully developed.
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t

r

w0(t, r) = 1

Bifurcation

w0(t, r) = Nδt,−r

w0(t, r) = Nδt,r

t

r

t

r

Fig. 6 (online colour at: www.ann-phys.org) Bifurcation in the vicinity of the instability point for the linear
chain as analyzed in [3]. The quadratic arrangement of the two linear chains allows a concise representation
of the connection weights. Dark gray means high connection weights between the corresponding cells t and
r. At the uniform initial state all connection weights are equal. The bifurcation drives the system into one of
the two possible states, which differ in their orientation. Decreasing the control parameter α to zero leads
to a one-to-one retinotopy. Instead of a delta function in the continuous case, here the retinotopic order is
described by Kronecker deltas.

3.9 Comparison with linear chains

Finally, we compare our results for strings with those of [3] where retina and tectum were treated as linear
chains consisting of N cells, respectively. In that reference, the order parameter equations read

U̇ij = [Λ − γ(2 − a)UijU−i−j + (4 − b′ − b′′)Ui−jU−ij ]Uij (67)

with the abbreviations

a = − γ + γ2,2

Λ22
, b′ = − γ + (γ2,0 − 1)/2

Λ20
, b′′ = − γ + (γ0,2 − 1)/2

Λ02
. (68)

The comparison of the coefficients A, B according to (50), (51) with γ(2 − a), γ(4 − b′ − b′′) exhibits two
differences: the factor 1/LTLR in A and B as well as the term 2Λ in the denominator. The absence of the
corresponding factor 1/N2 in [3] stems from the circumstance that the eigenfunctions were not normalized
there. Physically more interesting is the appearance of the term 2Λ in the denominator of A, B. The reason
for this is that we have used the mathematically correct equation for determining the center manifold (15)
according to [1,9], whereas in [3] the center manifold is adiabatically approximated by Ṡ = 0. However,
this ad-hoc method for implementing the adiabatic approximation, which is frequently used in the literature,
is only justified for real eigenvalues. As the eigenvalues of the strings are real, we deduce for the vicinity
of the instability point the relation Λ = −α+ γ ≈ 0. Thus, the coefficients (50), (51) turn into those of [3]
and the adiabatic approximation Ṡ = 0 can be applied here.

Furthermore, our results for the continuous case are analogous to the results for discrete cell arrays.
Also the transition to a perfect one-to-one retinotopy takes place in a corresponding way, as is illustrated in
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Fig. 6. Thus, we conclude that our geometry-independent model for the emergence of retinotopic projections
developed in [1] contains as a special case the results of [3]. In addition, we have extended the range of
validity, i.e. the domain around the instability with Λ = 0, where the order parameter equations represent
a quantitatively good approximation, as we have derived a more precise form of the center manifold (15).

4 Planes

In this section we extend our discussion to two dimensions where the cell sheets are assumed to be planes
of side lengths LT

1 , L
T
2 and LR

1 , L
R
2 , respectively. To obtain a consistent solution we assume again periodic

boundary conditions, i.e. the cell sheets are modelled as surfaces of tori. We start with presenting the linear
analysis in Sects. 4.1 and 4.2. Afterwards, in Sects. 4.3 and 4.4 it turns out that we have to calculate in
total sixteen order parameter equations where the quadratic term vanishes, as in the case of strings, and
where again selection rules reduce the number of cubic terms. This order parameter dynamics turns out to
be complicated as the two dimensions do not decouple in a trivial way. Therefore, we have to restrict our
analytical discussion of the order parameter dynamics to physiologically interesting special cases. If we set
all modes to zero except for one, we find retinotopy only in one dimension, which is shown in Sect. 4.5. In
a next step we consider the superposition of two retinotopic modes and investigate the necessary conditions
for their coexistence. Such a situation occurs, for instance, when the cooperativity function of the tectum
is monotonically decreasing, whereas the cooperativity function of the retina is not monotonic. In Sect. 4.6
we show that taking into account the center manifold contribution or higher modes leads to a sharpening of
the retinotopic character of the projection between planar retina and tectum.

4.1 Eigenfunctions

In the following we consider both retina and tectum to be planes with side lenghts L1 and L2. The points
on the plane are represented by Cartesian coordinates x = (x1, x2) , x1 ∈ [0, L1) , x2 ∈ [0, L2). The
magnitude of the plane is given by M = L1L2. The corresponding eigenvalue equation ∆ψ(x) = χψ(x)
is solved for periodic boundary conditions, i.e. ψj(xj) = ψj(xj +Lj) by the complete orthonormal system
of eigenfunctions

ψλ(x) =
1√
L1L2

exp
[
2πi

(
λ1x1

L1
− λ2x2

L2

)]
, (69)

where λ = (λ1, λ2). The cooperativity function c(x− x′) is expanded according to (3) in this basis:

c(x− x′) =
1

L1L2

∑
λ1,λ2

f(λ1,λ2) exp
{

2πi
[
λ1(x1 − x′

1)
L1

− λ2(x2 − x′
2)

L2

]}
. (70)

Note that again the expansion coefficients f(λ1,λ2) of the cooperativity functions are independent of the signs
of the parameters λ1, λ2, as the cooperativity functions should be symmetric with respect to their arguments:
c(x− x′) = c(x′ − x). This requirement and the linear independence of the exponential functions leads to
f(λ1,λ2) = f(±λ1,±λ2). From now on we assume that the cooperativity functions decouple with respect to
the two dimensions: c(x−x′) = c1(x1 −x′

1)c2(x2 −x′
2). As the individual cooperativity functions can be

expanded according to

cj(xj − x′
j) =

1
Lj

∑
λj

fλj exp
[
i
2π
Lj
λj(xj − x′

j)
]
, j = 1, 2 , (71)

the decoupling amounts to a factorization of the expansion coefficients: f(λ1,λ2) = fλ1fλ2 . With this we
allow for both isotropic and certain anisotropic cooperativity functions. This is an interesting feature as it
is reasonable to assume that real cell sheets have a preferential direction.
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4.2 Instability point

We analyze which modes become unstable. According to (6) this depends on the expansion coefficients and
the maximum eigenvalues are given by Λλu

T λu
R

= −α+ fT
λu

T
fR

λu
R

. By doing so we require that all unstable
modes become unstable simultaneously. This requirement is due to the fact that the order parameter equations
should be approximately valid in the vicinity of the instability point. If the eigenvalues of the corresponding
unstable modes would differ significantly, the situation that all modes are in the unstable region would have
the consequence that the maximum eigenvalue would be larger than zero, i.e. far away from the instability
point. Thus, the order parameter equations would be no adequate approximation. Consequently, we only
consider the case that Λλu

T λu
R

= Λλu′
T λu′

R
∀λu

T , λ
u
R, λ

u′
T , λ

u′
R , from which follows fT

λu
T

= fT
λu′

T

, fR
λu

R
=

fR
λu′

R

∀λu
T , λ

u
R, λ

u′
T , λ

u′
R . However, it is possible that fT

λu
T

�= fR
λu

R
. From now on the unstable modes are

assumed to be given by

λu = (1, 0), (−1, 0), (0, 1), (0,−1) . (72)

This occurs, for instance, for monotonically decreasing cooperativity functions where we obtain the relation
fT
1 > fT

λ (λ �= 0,±1), by analogy with strings (see Sect. 3.6). Then the maximum expansion coefficient
is given by fλu = f(λu

1 ,λu
2 ) = fλu

1
fλu

2
for λu

1 = 0, λu
2 = ±1 and λu

1 = ±1, λu
2 = 0, respectively. Note,

however, that the unstable modes (72) could also arise for non-monotonic cooperativity functions as we
will see below.

4.3 Order parameter equations

We specialize the order parameter equations (9) to planes. At first we determine the integrals (10), (11) of
products of eigenfunctions (69), which read

Iλ
λ(1)λ(2)... λ(n) =

(
1

L1L2

)(n−1)/2

δλ(1)+λ(2)+...+λ(n),λ , (73)

Jλ(1)λ(2)... λ(n) =
(

1
L1L2

)(n−2)/2

δλ(1)+λ(2)+...+λ(n),0 . (74)

For the order parameter equations (9) we need in (12), (13), (15) the special cases

Iλ
λ′ λ′′ =

1√
L1L2

δλ′+λ′′,λ , Iλ
λ′ λ′′ λ′′′ =

1
L1L2

δλ′+λ′′+λ′′′,λ , Jλ′ λ′′ = δλ′,−λ′′ . (75)

Note that the unstable modes (72) have the property λu′
+ λu′′ �= λu. Thus, the quadratic coefficient

(12) vanishes due to the first integral of (75): Aλu
T ,λu

T
′λu

T
′′

λu
R,λu

R
′λu

R
′′ = 0. To yield a concise calculation of the

order parameter equations, we introduce modes λ̄u which are complementary to the unstable modes λu by
permuting the two components:

λ̄u =

{
(0,±1) if λu = (±1, 0) ,
(±1, 0) if λu = (0,±1) .

(76)

The integrals (75) involve selection rules for the appearance of cubic terms (13) which are analogous to
those for strings. This condition turns out to be λu′

+λu′′
+λu′′′

= λu for (72), which leads to the following
nine possibilities:

(λu′
, λu′′

, λu′′′
) = (λu, λu,−λu), (λu,−λu, λu), (−λu, λu, λu), (λu, λ̄u,−λ̄u), (λ̄u, λu,−λ̄u),

(λ̄u,−λ̄u, λu), (λu,−λ̄u, λ̄u), (−λ̄u, λu, λ̄u), (−λ̄u, λ̄u, λu) . (77)
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In this way it can be shown that in total 14 possible cubic terms have to be taken into account. The resulting
order parameter equations read

U̇λu
T λu

R
= c1(Uλu

T λu
R
)2U−λu

T −λu
R

+ c2Uλu
T λu

R
U−λu

T λu
R
Uλu

T −λu
R

+ c3Uλu
T λu

R

(
Uλ̄u

T λu
R
U−λ̄u

T −λu
R

+Uλ̄u
T −λu

R
U−λ̄u

T λu
R

)
+ c4Uλ̄u

T λu
R
Uλu

T −λu
R
U−λ̄u

T λu
R

+ c5Uλu
T λu

R

(
Uλu

T λ̄u
R
U−λu

T −λ̄u
R

+U−λu
T λ̄u

R
Uλu

T −λ̄u
R

)

+c6U−λu
T λu

R
Uλu

T λ̄u
R
Uλu

T −λ̄u
R

+ c7Uλu
T λu

R

(
Uλ̄u

T λ̄u
R
U−λ̄u

T −λ̄u
R

+ Uλ̄u
T −λ̄u

R
U−λ̄u

T λ̄u
R

)

+c8
(
Uλ̄u

T λu
R
Uλu

T λ̄u
R
U−λ̄u

T −λ̄u
R

+ U−λ̄u
T λu

R
Uλu

T λ̄u
R
Uλ̄u

T −λ̄u
R

+Uλ̄u
T λu

R
Uλu

T −λ̄u
R
U−λ̄u

T λ̄u
R

+ U−λ̄u
T λu

R
Uλu

T −λ̄u
R
Uλ̄u

T λ̄u
R

)
. (78)

The coefficients c1–c8 are fully determined by the expansion coefficients fλ of the cooperativity functions
and the control parameter α, as is documented in [8].

4.4 Real variables

To investigate how the complex order parameters contribute to the one-to-one-retinotopy between the planes,
we have to transform them to real variables. To this end we introduce the transformation

uλu
T λu

R
= Uλu

T λu
R

+ U−λu
T −λu

R
, vλu

T λu
R

= i(Uλu
T λu

R
− U−λu

T −λu
R
) . (79)

Thus, with the help of the function

hλu
T λu

R,λu′
T λu′

R ,λu′′
T λu′′

R
(u, v) := uλu

T λu
R
uλu′

T λu′
R
uλu′′

T λu′′
R

− uλu
T λu

R
vλu′

T λu′
R
vλu′′

T λu′′
R

+vλu
T λu

R
uλu′

T λu′
R
vλu′′

T λu′′
R

+ vλu
T λu

R
vλu′

T λu′
R
uλu′′

T λu′′
R

(80)

the complex order parameter equations (78) are transformed to real ones as follows:

u̇λu
T λu

R
= uλu

T λu
R

[
c1

(
u2

λu
T λu

R
+ v2

λu
T λu

R

)
+ c2

(
u2

λu
T −λu

R
+ v2

λu
T −λu

R

)

+c3
(
u2

λ̄u
T λu

R
+ v2

λ̄u
T λu

R
+ u2

λ̄u
T −λu

R
+ v2

λ̄u
T −λu

R

)
+ c5

(
u2

λu
T λ̄u

R
+ v2

λu
T λ̄u

R
+ u2

λu
T −λ̄u

R
+ v2

λu
T −λ̄u

R

)

+c7
(
u2

λ̄u
T λ̄u

R
+ v2

λ̄u
T λ̄u

R
+ u2

λ̄u
T −λ̄u

R
+ v2

λ̄u
T −λ̄u

R

)]
+ c6hλu

T −λu
R,λu

T λ̄u
R,λu

T −λ̄u
R
(u, v)

+c8
[
hλ̄u

T λ̄u
R,λ̄u

T λu
R,λu

T λ̄u
R
(u, v) + hλ̄u

T −λu
R,λu

T λ̄u
R,λ̄u

T −λ̄u
R
(u, v)

+hλ̄u
T −λ̄u

R,λu
T −λ̄u

R,λ̄u
T λu

R
(u, v) + hλ̄u

T −λu
R,λu

T −λ̄u
R,λ̄u

T λ̄u
R
(u, v)

]
, (81)

The equations for the amplitudes vλu
T λu

R
have an identical structure as they are obtained from (81) by

exchanging the variables u and v. It can be shown that the order parameter dynamics (81) is governed by
a potential [8]. However, as the corresponding expression for the potential is lengthy, we will not discuss
it here explicitly. Instead, we investigate different analytical cases which depend on the number of non-
vanishing modes. In particular, we are interested in the emergence of retinotopical ordered projections
between the planes.

4.5 Retinotopic projections: non-vanishing modes

We start with the assumption that only the amplitudes uj , vj of one mode are different from zero. We
consider the case j = 2, but the other cases yield analogous results. The unstable part (7) reads

U(t, r) = U10,−10 exp
[
i2π

(
t1
LT

1
− r1
LR

1

)]
+ U−10,10 exp

[
−i2π

(
t1
LT

1
− r1
LR

1

)]
, (82)

www.ann-phys.org c© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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which is equivalent to

U(t, r) = u2 cos
[
2π
(
t1
LT

1
− r1
LR

1

)]
+ v2 sin

[
2π
(
t1
LT

1
− r1
LR

1

)]
. (83)

The real order parameter equations (81) reduce to

u̇2 = Λu2 +
c1
4
u2(u2

2 + v2
2) , v̇2 = Λv2 +

c1
4
v2(u2

2 + v2
2) . (84)

We obtain constant phase-shift angles, which was already discussed in the case of strings (see Sect. 3.5). With
ξ =

√
u2

2 + v2
2 it follows ξ̇ = Λξ+(c1/4)ξ3. For the stationary case this leads to ξ = 0 or ξ =

√−4Λ/c1.
We are only interested in the case ξ �= 0. This case corresponds to a retinotopy between r1 and t1, respec-
tively. Thus, we have a retinotopic order only in one dimension and not in the whole plane.

Now we examine the question, if two modes are able to generate a retinotopic state in the plane. As a
typical example we consider the case that u2, v2 as well as u8, v8 remain. Thus, the unstable part (7) has
the complex decomposition

U(t, r) = U10,−10 exp
[
i2π

(
t1
LT

1
− r1
LR

1

)]
+ U−10,10 exp

[
−i2π

(
t1
LT

1
− r1
LR

1

)]

+U01,0−1 exp
[
i2π

(
t2
LT

2
− r2
LR

2

)]
+ U0−1,01 exp

[
−i2π

(
t2
LT

2
− r2
LR

2

)]
, (85)

which due to (79) corresponds to the real decomposition

U(t, r) = u2 cos
[
2π
(
t1
LT

1
− r1
LR

1

)]
+ v2 sin

[
2π
(
t1
LT

1
− r1
LR

1

)]

+u8 cos
[
2π
(
t2
LT

2
− r2
LR

2

)]
+ v8 sin

[
2π
(
t2
LT

2
− r2
LR

2

)]
. (86)

The real order parameter equations (81) read

u̇2 =
[
Λ +

c1
4

(u2
2 + v2

2) +
c7
4

(u2
8 + v2

8)
]
u2 ,

v̇2 =
[
Λ +

c1
4

(u2
2 + v2

2) +
c7
4

(u2
8 + v2

8)
]
v2 ,

u̇8 =
[
Λ +

c1
4

(u2
8 + v2

8) +
c7
4

(u2
2 + v2

2)
]
u8 ,

v̇8 =
[
Λ +

c1
4

(u2
8 + v2

8) +
c7
4

(u2
2 + v2

2)
]
v8 . (87)

Again we obtain constant phase-shift angles. With the amplitudes ξ =
√
u2

2 + v2
2 , η =

√
u2

8 + v2
8 the

following coupled equations result

ξ̇ =
(
Λ +

c1
4
ξ2 +

c7
4
η2
)
ξ , η̇ =

(
Λ +

c1
4
η2 +

c7
4
ξ2
)
η . (88)

We investigate under which conditions the two retinotopic modes coexist. If ξ, η �= 0, we obtain from
ξ̇ = η̇ = 0 the relation (ξ2 − η2)(c1 − c7) = 0. As we should minimize the restrictions for the coefficients
c1, c7, we have in general c1 �= c7, so we conclude ξ = η. Inserting this result in (88) for the stationary
case leads to

ξ = η =
√

− 4Λ
c1 + c7

. (89)
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Fig. 7 (online colour at: www.ann-phys.org) Cooperativity functions for retina and tectum according to the
special cases (92). The restriction to monotonically decreasing cooperativity functions has to be abandoned.

V (ξ, η)

ξ

η

ξ

η

0

0

Fig. 8 (online colour at: www.ann-phys.org) The potential (90) for two coexistent retinotopic modes. Ac-
cording to (89) there is a maximum at ξ = η = 0 and a minimum at ξ = η. The right plot shows the
equipotential lines, which pronounces the extrema of V .

As the amplitudes ξ, η have to be real and Λ > 0, the coefficients c1, c7 have to fulfill the condition
c1 + c7 < 0 . Furthermore, we require that the coexistence of both modes is stable. To this end we consider
the potential

V (ξ, η) = − Λ
2

(ξ2 + η2) − c1
16

(ξ4 + η4) − c7
8
ξ2η2 , (90)

which reproduces according to

ξ̇ = − ∂V (ξ, η)
∂ξ

, η̇ = − ∂V (ξ, η)
∂η

(91)

the amplitude equations (88). A stable state corresponds to a minimum of the potential (90), which leads
to the condition c1 < c7. With the explicit form of the coefficients c1 and c7 derived in [8] these consider-
ations lead to the result, that either γ20,20 or γ11,11 could vanish. If γ20,20 = 0, the stability is guaranteed
by −5γ11,11/3 < γ < −7γ11,11, whereas γ11,11 = 0 demands 5γ20,20/3 < γ < −γ20,20. As an ex-
ample we consider the first case and assume a special form of the cooperativity functions (70) with the
expansion coefficients

fT
±10 = fT

0±1 = fR
±10 = fR

0±1 = 0.1 , fT
±1,±1 = 0.05 , fR

±1,±1 = −0.1 , (92)
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U U + S(U)

t1 − r1

t2 − r2

−1

1
−1

1

0

0

t1 − r1

t2 − r2

−1

1
−1

1

0

0

Fig. 9 (online colour at: www.ann-phys.org) The contribution of the center manifold S(U) leads to a more
distinct concentration of the connection weight w(t, r) ≈ 1 + U(t, r) + S(U(t, r)) around t = r, as
compared with the approximation w(t, r) ≈ 1 + U(t, r).

thus it follows γ = 0.01 and γ11,11 = −0.005. However, although the cooperativity function of the tectum
is monotonically decreasing, the cooperativity function of the retina is not monotonic in this case, as is
illustrated in Fig. 7. The corresponding potential (90) is shown in Fig. 8.

4.6 Center manifold

In the next step we analyze the influence of the center manifoldS(U) for the special case (92).The connection
weight can be represented as w(t, r) = 1 + U(t, r) + S(U(t, r)) (see Sect. 2). Using the relations (14)
and (15) the stable part is approximated in the second order. We rewrite the result to real variables and
eigenfunctions, where we set LT,R

1 = LT,R
2 = 2. In this way we compare U(t, r) with U(t, r)+S(U(t, r))

in Fig. 9. It is evident that the retinotopic projection gets sharper due to the contribution of the center
manifold, i.e. the projection is maximal around the point t = r. This corresponds to the situation found in
the case of linear strings; the contribution of the higher modes have the tendency to support the emergence
of retinotopic order.

5 Spheres

In this Section we apply our general model [1] again to projections between two-dimensional manifolds.
Now, however, we consider manifolds with constant positive curvature. Typically, the retina represents
approximately a hemisphere, whereas the tectum has an oval form [2,8]. Thus, it is biologically reasonable
to model both cell sheets by spherical manifolds. Without loss of generality we assume that the two cell
sheets for retina and tectum are represented by the surfaces of two unit spheres, respectively. Thus, in
our model, the corresponding continuously distributed cells are represented by unit vectors r̂ and t̂. Every
ordered pair (t̂, r̂) is connected by a positive connection weight w(t̂, r̂) as is illustrated in Fig. 10. The
generalized Häussler-von der Malsburg equations (1) for these connection weights are specified as follows

ẇ(t̂, r̂) = f(t̂, r̂, w) − w(t̂, r̂)
8π

∫
dΩt′ f(t̂ ′, r̂, w) − w(t̂, r̂)

8π

∫
dΩr′ f(t̂, r̂ ′, w) , (93)

where the total growth rate is defined by

f(t̂, r̂, w) = α+ w(t̂, r̂)
∫
dΩt′

∫
dΩr′cT (t̂ · t̂ ′) cR(r̂ · r̂ ′)w(t̂ ′, r̂ ′) . (94)

The integrations in (93) and (94) are performed over all points t̂, r̂ on the spheres, where dΩt, dΩr represent
the differential solid angles of the corresponding unit spheres. Note that the factors 8π in eq. (93) are twice the
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w(t̂, r̂)
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Fig. 10 The cells of retina and tectum,
which are assumed to be continuously dis-
tributed on unit spheres, are represented by
their unit vectors r̂ and t̂, respectively. The
two cell sheets are connected by positive con-
nection weights w(t̂, r̂).

measure of the unit sphere. After discussing the linear stability analysis around the homogeneous solution of
the generalized Häussler-von der Malsburg equations (93) in Sect. 5.1, we perform the nonlinear synergetic
analysis in Sect. 5.2, which yields the underlying order parameter equations in the vicinity of the bifurcation.
As in the case of Euclidean manifolds, we show that they have no quadratic terms, represent a potential
dynamics, and allow for retinotopic modes. In Sect. 5.3 we include the influence of higher modes upon
the connection weights, which leads to recursion relations for the corresponding amplitudes. If we restrict
ourselves to special cooperativity functions, the resulting recursion relations can be solved analytically by
using again the method of generating functions, which was already applied in the case of strings. As a result
of our analysis we obtain a perfect one-to-one retinotopy if the global growth rate α is decreased to zero.

5.1 Linear analysis

According to the general reasoning in [1] we start with fixing the metric on the manifolds and determine the
eigenfunctions of the corresponding Laplace-Beltrami operator. Afterwards, we expand the cooperativity
functions with respect to these eigenfunctions and perform a linear analysis of the stationary uniform state.

5.1.1 Laplace-Beltrami operator

For the time being we neglect the distinction between retina and tectum, because the following considerations
are valid for both manifolds. Using spherical coordinates, we write the unit vector on the sphere as x̂ =
(sinϑ cosϕ, sinϑ sinϕ, cosϑ). The Laplace-Beltrami operator for the sphere has the well-known form

∆ϑ,ϕ =
1

sinϑ
∂

∂ϑ

(
sinϑ

∂

∂ϑ

)
+

1
sin2 ϑ

∂2

∂ϕ2 , (95)

whose eigenfunctions are known to be given by spherical harmonics Ylm(x̂), i.e.

∆ϑ,ϕ Ylm(x̂) = −l(l + 1)Ylm(x̂) , (96)

which form a complete orthonormal system on the unit sphere.

5.1.2 Cooperativity functions

The argument of the cooperativity functions c(x̂ · x̂′) is the scalar product x̂ · x̂′ which takes values between
−1 and +1. Therefore the cooperativity functions can be expanded in terms of Legendre functionsPl(x̂·x̂′),
which form a complete orthogonal system on this interval [10, 7.221.1]:

c(x̂ · x̂′) =
∞∑

l=0

2l + 1
4π

fl Pl(x̂ · x̂′) . (97)
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Using the Legendre addition theorem [13] we arrive, for each manifold, at the expansion (3)

cT (t̂ · t̂′) =
∞∑

L=0

L∑
M=−L

fT
L Y

T
LM (t̂ )Y T∗

LM (t̂′ ) , cR(r̂ · r̂′) =
∞∑

l=0

l∑
m=−l

fR
l Y

R
lm(r̂)Y R∗

lm (r̂′ ) . (98)

Note that the normalization of the cooperativity functions and the orthonormality relations lead to the
constraints fT

0 = fR
0 = 1.

5.1.3 Eigenvalues

According to Sect. 2, a linear stability analysis around the stationary uniform state leads to the eigenvalue
problem of the linear operator (4). It has the eigenfunctions vMm

Ll (t̂, r̂) = Y T
LM (t̂ )Y R

lm(r̂) and the spectrum
of eigenvalues (6). By changing the uniform growth rateα in a suitable way, the real parts of some eigenvalues
(6) become positive and the system can be driven to the neighborhood of an instability. Which eigenvalues
(6) become unstable in general depends on the respective values of the given expansion coefficients fT

L ,
fR

l . If we assume monotonically decreasing expansion coefficients fT
L , fR

l , i.e.

1 = fT
0 ≥ fT

1 ≥ fT
2 ≥ . . . ≥ 0 , 1 = fR

0 ≥ fR
1 ≥ fR

2 ≥ . . . ≥ 0 , (99)

the maximum eigenvalue in (6) is given by Λmax = ΛMm
11 = −α + fT

1 f
R
1 . Thus, the instability occurs

when the global growth rate reaches its critical value αc = fT
1 f

R
1 . At this instability point all nine modes

with (Lu, lu) = (1, 1) and Mu = 0,±1, mu = 0,±1 become unstable, where we have introduced the
index u for the unstable modes.

5.2 Nonlinear analysis

In this subsection we specialize the generic order parameter equations of [1] to unit spheres. We observe that
the quadratic term vanishes and derive selection rules for the appearance of cubic terms. Furthermore, we
essentially simplify the calculation of the order parameter equations by taking into account the symmetry
properties of the cubic terms. We show that the order parameter equations represent a potential dynamics,
and determine the underlying potential.

5.2.1 General structure of order parameter equations

The expansion of the unstable modes (7) reads U(t̂, r̂) = UMumu

11 Y T
1Mu(t̂ )Y R

1mu(r̂ ) and, correspondingly,
the contribution of the stable modes (8) is given by S(t̂, r̂) = SMm

Ll Y T
LM (t̂ )Y R

lm(r̂ ) . Note that the latter
summation is performed over all parameters (L, l) except for (Lu, lu) = (1, 1), i.e. from now on the
parameters (L, l) stand for the stable modes alone. The resulting order parameter equations (9) read

U̇Mumu

= ΛUMumu

+Amu,mu′mu′′
Mu,Mu′Mu′′ U

Mu′mu′
UMu′′mu′′

+Bmu,mu′mu′′mu′′′
Mu,Mu′Mu′′Mu′′′U

Mu′mu′
UMu′′mu′′

UMu′′′mu′′′
. (100)

With the integrals (10)

Im,m(1)m(2)...m(n)

l,l(1)l(2)...l(n) =
∫
dΩx Y

∗
lm(x̂)Yl(1) m(1)(x̂)Yl(2) m(2)(x̂) . . . Yl(n) m(n)(x̂) , (101)

Jm(1)m(2)...m(n)

l(1)l(2)...l(n) =
∫
dΩx Yl(1) m(1)(x̂)Yl(2) m(2)(x̂) . . . Yl(n) m(n)(x̂) (102)

the quadratic coefficients (12) readAmu,mu′mu′′
Mu,Mu′Mu′′ = fT

1 fR
1 IMu,Mu′Mu′′

1,1 1 Imu,mu′mu′′
1,1 1 ,whereas the cubic

coefficients (13) are

Bmu,mu′mu′′mu′′′
Mu,Mu′Mu′′Mu′′′ = − 1

8π
fT
1 fR

1

(
IMu,Mu′Mu′′Mu′′′
1,1 1 1 δmumu′ Jmu′′mu′′′

1 1 + Imu,mu′mu′′mu′′′
1,1 1 1
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×δMuMu′ JMu′′Mu′′′
1 1

)
+
{[
fT

L fR
l + fT

1 fR
1

]
IMu,Mu′M
1,1 L Imu,mu′m

1,1 l − 1
4
√
π

[δL0 δM0δMuMu′

×
(
1 + fR

l

)
Imu,mu′m
1,1 l +δl0 δm0δmumu′

(
1 + fT

L

)
IMu,Mu′M
1,1 L

]}
HMm,Mu′′mu′′Mu′′′mu′′′

Ll . (103)

The center manifold coefficients HMm,MumuMu′mu′
Ll read

HMm,MumuMu′mu′
Ll =

fT
1 f

R
1

2Λ − ΛLl

[
IM,MuMu′
L,1 1 Im,mumu′

l,1 1 − 1
4
√
π

(
JMuMu′

1 1 Im,mu′mu′′
l,1 1 δL0

+Jmumu′
1 1 IM,MuMu′

L,1 1 δl0

)]
. (104)

5.2.2 Integrals

The order parameter equations contain the following integrals: Jm′m′′
11 , Im,m′m′′

l,11 , Im,m′m′′
1,1l , Im,m′m′′m′′′

1,111 .

For the first integral one easily obtains Jm′m′′
11 = (−1)m′

δm′,−m′′ . Integrals over three and four spherical
harmonics can be calculated using the Wigner-Eckart-theorem,

Im,m′m′′
l,l′l′′ =

√
(2l′ + 1)(2l′′ + 1)

4π(2l + 1)
C(l′, 0, l′′, 0|l, 0)C(l′,m′, l′′,m′′|l,m) , (105)

whence for l′ = l′′ = 1 it follows

Im,m′m′′
l,11 =

3√
4π(2l + 1)

C(1, 0, 1, 0|l, 0)C(1,m′, 1,m′′|l,m) . (106)

As the Clebsch-Gordan coefficients C(l1, 0, l2, 0|l3, 0) vanish if the sum l1 + l2 + l3 is odd [11], we obtain

Im,m′m′′
1,11 = 0. Thus, the quadratic contribution to the order parameter equations (100) vanishes, by analogy

with Euclidean manifolds. Non-vanishing integrals (106) can only occur for l = 0 and l = 2. Furthermore,
the integrals Im,m′m′′

1,1l follow from Im,m′m′′
1,1l = (−1)m′+m′′

I−m′′,−m m′
l,11 . Integrals over four spherical

harmonics can also be calculated using the Wigner-Eckart-theorem, and the result is

Im,m′m′′m′′′
l,l′l′′l′′′ =

l′′+l′′′∑
l3=|l′′−l′′′|

l3∑
m3=−l3

√
(2l′′ + 1)(2l′′′ + 1)

4π(2l3 + 1)
C(l′′, 0, l′′′, 0|l3, 0)

×C(l′′,m′′, l′′′,m′′′|l3,m3)I
m,m′m3
l,l′l3 . (107)

Specialyzing (107) to l = l′ = l′′ = l′′′ = 1 and taking into account (105) leads to Im,m′m′′m′′′
1,1 1 1 ∝

δm′+m′′+m′′′,m. Thus, we obtain the selection rule that the nonvanishing integrals Im,m′m′′m′′′
1,1 1 1 fulfill the

condition m′ +m′′ +m′′′ = m.

5.2.3 Order parameter equations

To simplify the calculation of the cubic coefficients (103) in the order parameter equations (100), we perform
some basic considerations which lead to helpful symmetry properties. To this end we start with replacing

mu by −mu which yields Imu,mu′
mu′′

mu′′′

1,1 1 1 = I−mu,−mu′ −mu′′ −mu′′′

1,1 1 1 . Corresponding symmetry relations
can also be derived for the other terms in (103). Therefore, we conclude that the order parameter equation
for U−Mu−mu

is obtained from that of UMumu

by negating all indices Mu and mu with unchanged fac-
tors. Thus, instead of explicitly calculating nine order parameter equations, it is sufficient to restrict oneself
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determining the order parameter equations forU00,U10,U01, andU11. The remaining five order parameter
equations follow instantaneously from those by applying the symmetry relations, as is further worked out
in [8].

To investigate how the complex order parameter equations contribute to the one-to-one retinotopy, we
transform them to real variables according to

u0 = U00/
√

2 , u1 = (U11 + U−1−1)/2 , u2 = i(U11 − U−1−1)/2 ,

u3 = (U1−1 + U−11)/2 , u4 = i(U1−1 − U−11)/2 , u5 = (U01 − U0−1)/2 ,

u6 = i(U01 + U0−1)/2 , u7 = (U10 − U−10)/2 , u8 = i(U10 + U−10)/2 . (108)

The resulting real order parameter equations turns out to follow according to

u̇i = − ∂V ({uj})
∂ui

(109)

from the potential

V ({uj}) = − Λ
2

8∑
j=0

u2
j − β1

2
u4

0 − β̄2u
2
0(u

2
5 + u2

6) − β2u
2
0(u

2
7 + u2

8) − β3u
2
0(u

2
1 + u2

2 + u2
3 + u2

4)

−
√

2β4u0(u1u5u7 + u2u5u8 + u2u6u7 + u4u6u7 − u1u6u8 − u3u5u7 − u4u5u8 − u3u6u8)

−β5(u2
5 − u2

6)(u1u3 + u2u4) − β5(u2
7 − u2

8)(u1u3 − u2u4) − 2β5u7u8(u1u4 + u2u3)

−2β5u5u6(u2u3 − u1u4) +
1
2

[β6(u2
5 + u2

6) + β̄6(u2
7 + u2

8)](u
2
1 + u2

2 + u2
3 + u2

4)

−β7

2
(u2

1 + u2
2)(u

2
3 + u2

4) − β3(u2
5 + u2

6)(u
2
7 + u2

8)

−β8

4
[
(u2

1 + u2
2)

2 + (u2
3 + u2

4)
2]+

β9

4
(u2

5 + u2
6)

2 +
β̄9

4
(u2

7 + u2
8)

2 . (110)

The dependence of the coefficients βi and β̄i on the expansion coefficients fl and the control parameter
α is found in [8]. Naturally, a complete analytical determination of all stationary states of the real order
parameter equations (109) is impossible. However, we are able to demonstrate that certain stationary states
admit for retinotopic modes.

5.2.4 Special case

To this end we consider the special case where u1, u2, u5, u6, u7, u8 vanish. Then the order parameter
equations (109) with (110) for the non-vanishing amplitudes u0, u3, u4 reduce to

u̇0 = Λu0 + 2β1u
3
0 + 2β3(u2

3 + u2
4)u0 ,

u̇3 = Λu3 + 2β3u
2
0u3 + β8(u2

3 + u2
4)u3 ,

u̇4 = Λu4 + 2β3u
2
0u4 + β8(u2

3 + u2
4)u4 . (111)

Due to the relation u̇3/u3 = u̇4/u4 one obtains constant phase-shift angles, i.e. it holds u3 ∝ u4. Therefore,
the system of three coupled differential equations can be reduced to two variables. To this end we introduce
the new variable

ξ =
√
u2

3 + u2
4 , (112)
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which leads to

u̇0 = Λu0 + 2β1u
3
0 + 2β3ξ

2u0 , ξ̇ = Λξ + 2β3u
2
0ξ + β8ξ

3 . (113)

The stationary solution, which corresponds to a coexistence of the two modes, is given by

u2
0 = − Λ

2(β3 + β8)
, ξ2 = − Λ

β3 + β8
, (114)

where we used the relation β8 = β1 +β3 [8]. Demanding real amplitudes u0, ξ leads to the coexistence con-
dition β3+β8 < 0. Furthermore, we require stability for this state. Therefore we consider the corresponding
potential V (u0, ξ), which can be read off from (110) and (112):

V (u0, ξ) = − Λ
2

(u2
0 + ξ2) − β1

2
u4

0 − β3u
2
0ξ

2 − β4

4
ξ4 . (115)

Stable states correspond to a minimum of V , which leads to the conditions 2β3 − β8 > 0 , β3 − β8 > 0.
If all three inequalities are valid, both the u0- and the ξ-mode coexist. If we set u4 = 0, without loss of
generality, the solution reads in complex variables according to (112)

U00 =

√
− Λ
β3 + β8

, U1−1 = U−11 = −
√

− Λ
β3 + β8

. (116)

Thus, the unstable part, specified in Sect. 5.2.1, is given by

U(t̂, r̂) =

√
− Λ
β3 + β8

[
Y T

10(t̂ )Y
R
10(r̂) − Y T

11(t̂ )Y
R
1−1(r̂) − Y T

1−1(t̂ )Y
R
11(r̂)

]
. (117)

Using the Legendre addition theorem reduces (117) to

U(t̂, r̂) =

√
− Λ
β3 + β8

P1(t̂ · r̂) (118)

with P1(t̂ · r̂) = t̂ · r̂. Thus, the unstable part is minimal, if t̂ and r̂ are antiparallel, i.e. the distance of
the corresponding points on the unit sphere is maximum. Decreasing the angle between t̂ and r̂ leads to
increasing values of U(t̂, r̂), and the maximum occurs for parallel unit vectors. This justifies calling the
mode (118) retinotopic.

5.3 One-to-one retinotopy

Now we investigate whether the generalized Häussler-von der Malsburg equations (93) describe the emer-
gence of a perfect one-to-one retinotopy between two spheres. To this end we follow the unpublished
suggestions of [12] and treat systematically the contribution of higher modes. Because the Legendre func-
tions form a complete orthogonal system for functions defined on the interval [−1,+1], their products can
always be written as linear combinations of Legendre functions. This motivates that the influence of higher
modes upon the connection weights, which obey the generalized Häussler-von der Malsburg equations (93),
can be included by the ansatz

w(σ) =
∞∑

l=0

(2l + 1)ZlPl(σ) , (119)

where the amplitudes Zl are time dependent.
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5.3.1 Recursion relations

Inserting (119) into the generalized Häussler-von der Malsburg equations (93) and performing the integrals
over the respective unit spheres leads to

∞∑
l=0

(2l + 1)ŻlPl(σ) = α

[
1 −

∞∑
l=0

(2l + 1)ZlPl(σ)

]

+
∞∑

l=0

(2l + 1)ZlPl(σ)
∞∑

l′=0

(2l′ + 1)Zl′f
T
l′ f

R
l′ [Pl′(σ) − Zl′ ] . (120)

The products of Legendre functions occuring in (120) can be reduced to linear combinations of single
Legendre functions according to the standard decomposition [10, 8.915]

Pl(σ)Pl′(σ) =
l∑

k=0

Al,l′,kPl+l′−2k(σ) , l ≤ l′ (121)

with the coefficients

Al,l′,k =
(2l′ + 2l − 4k + 1) al′−kakal−k

(2l′ + 2l − 2k + 1) al+l′−k
, ak =

(2k − 1)!!
k!

. (122)

Thus, contributions to the polynomial Pl̃(σ) only occur iff the relation k = (l + l′ − l̃)/2 is fulfilled.
Furthermore, using the orthonormality relation of the polynomials yields the following recursion relation
for the amplitudes Zl:

(2l + 1)Żl = α[δl,0 − (2l + 1)Zl] − (2l + 1)Zl(Z2
0 + 3fT

1 f
R
1 Z

2
1 )

+
∞∑

l′=0

(2l′ + 1)Zl′


 l∑

l′′=0

(2l′′ + 1)Zl′′f
T
l′′f

R
l′′

l′′∑
k=0

Al′,l′′,kδk,(l′+l′′−l)/2

+
∞∑

l′′=l′+1

(2l′′ + 1)Zl′′f
T
l′′f

R
l′′

l′∑
k=0

Al′,l′′,kδk,(l′+l′′−l)/2


 . (123)

Note that eq. (123) cannot be solved analytically for arbitrary expansion coefficients fT
l , fR

l of the cooper-
ativity functions. Therefore, we restrict ourselves from now on to a special case.

5.3.2 Special cooperativity functions

For simplicity we assume for the cooperativity functions (97) that f0 = 1 , f1 �= 0 , fl = 0 for l �= 0,±1.
With this choice the recursion relation (123) for l = 0 reduces to

Ż0 = −(α+ Z2
0 + 3γZ2

1 )(Z0 − 1) , (124)

where we have used again the abbreviation γ = fT
1 f

R
1 . For l �= 0, by taking into account (122), we obtain

Żl = −(α+ Z2
0 + 3γZ2

1 )Zl + Z0Zl + 3γZ1
lZl−1 + (l + 1)Zl+1

2l + 1
. (125)

The long-time behavior of the system corresponds to its stationary states. They are determined by Z0 = 1
from (124), whereas (125) leads to a nonlinear recursion relation for the amplitudesZl with l �= 0. However,
by introducing the variable

u =
α+ 3γZ1(u)2

3γZ1(u)
, (126)
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this nonlinear recursion relation can be formally transformed into the linear one

(l + 1)Zl+1(u) = (2l + 1)uZl(u) + lZl−1(u) , l ≥ 1 . (127)

Thus, determining the stationary solution of the nonlinear recursion relation (125) amounts to solving the
linear recursion relation (127) for Zl(u) in such a way that the self-consistency condition (126) is fulfilled.

5.3.3 Generating function

To determine the amplitudes Zl(u) we calculate their generating function

E(x, u) =
∞∑

l=0

Zl(u)xl , (128)

where we have the normalization

E(0, u) = Z0(u) = 1 . (129)

Multiplying both sides of (127) with xl and summing over l ≥ 1 leads to an inhomogeneous nonlinear
partial differential equation of first order for the generating function:

(x2 − 2ux+ 1)
∂E(x, u)
∂x

= (u− x)E(x, u) + Z1(u) − u . (130)

Using the normalization condition (129) its solution is given by

E(x, u) =
1 + [Z1(u) − u] ln

√
x2 − 2ux+ 1 + x− u

1 − u√
x2 − 2ux+ 1

. (131)

5.3.4 Decomposition

We now determine the unknown amplitudes Zl(u). From the mathematical literature it is well-known that
the recursion relation (127) holds both for the Legendre functions of first kind Pl(u) and second kind
Ql(u), respectively [10]. Thus, we expect that the generating function (131) can be represented as a linear
combination of the generating functions of the Legendre functions of both first and second kind, which are
given by [10, 8.921] and [10, 8.791.2]:

EP (x, u) =
∞∑

l=0

Pl(u)xl =
1√

x2 − 2ux+ 1
, (132)

EQ(x, u) =
∞∑

l=0

Ql(u)xl =
ln

√
x2 − 2ux+ 1 + u− x√

u2 − 1√
x2 − 2ux+ 1

. (133)

Indeed, taking into account the explicit form of the Legendre function of second kind for l = 0 [13]

Q0(u) =
1
2

ln
u+ 1
u− 1

, (134)

the generating function (131) decomposes according to

E(x, u) = {1 + [Z1(u) − u]Q0(u)}EP (x, u) − [Z1(u) − u]EQ(x, u) . (135)
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Pl(u) Ql(u)

1

1 1

l = 1

u

l = 0

u l = 2

l = 0

l = 1

l = 2∧

>

∧

>

Fig. 11 (online colour at: www.ann-phys.org) The Legendre functions of first and second kind Pl(u) and
Ql(u) for u > 1. We have Pl(1) = 1, whereas Ql(u) diverges for u ↓ 1. Important for the boundary
condition of Zl(u) is the different behavior for increasing values of l: Pl(u) diverges, whereas Ql(u)
converges to zero.

Inserting (132), (133) and performing a comparison with (128) then yields the result

Zl(u) = {1 + [Z1(u) − u]Q0(u)}Pl(u) − [Z1(u) − u]Ql(u) . (136)

Thus, the amplitudesZl(u) turn out to be linear combinations ofPl(u) andQl(u). To fix the yet undetermined
amplitudeZ1(u) in the expansion coefficients of (136), we have to take into account the boundary condition
that the sum in the ansatz (119) has to converge.

5.3.5 Boundary condition

Because the Legendre functions Pl(σ) do not vanish with increasing l, we must require that Zl(u) vanishes
in the limit l → ∞. The series of Legendre functions of first kind Pl(u) with fixed u > 1 diverges for
l → ∞ according to [10, 8.917]: P0(u) < P1(u) < P2(u) < . . . < Pn(u) < . . . , u > 1. The Legendre
functions of second kindQl(u), however, converge to zero (see Fig. 11). Thus, performing the limit l → ∞
in eq. (136) and using the explicit form [13] Q1(u) = uQ0(u) − 1 it follows that Z1(u) is fixed according
to Z1(u) = Q1(u)/Q0(u). With this we obtain that the result (136) finally reads

Zl(u) =
Ql(u)
Q0(u)

, (137)

which is not valid only for l �= 0 but also for l = 0 due to (129).

5.3.6 Connection weight

Inserting (137) into (119) yields the following solution for the connection weight:

w(σ) =
1

Q0(u)

∞∑
l=0

(2l + 1)Ql(u)Pl(σ) . (138)

Using the identity [10, 8.791.1] and (134), we obtain for the connection weight

w(σ) =
2

u− σ

(
ln
u+ 1
u− 1

)−1

. (139)

Note that integrating (139) over the unit sphere leads to 4π, i.e. the total connection weight coincides with
the measure M .
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w(σ)

α3 < α2 < α1

α3
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σ
−1 0 +1
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Fig. 12 (online colour at: www.ann-phys.org) a) Relation (140) between the control parameter α and the variable u.
b) The connection weight for different values of the control parameter α. For decreasing values of α the connection
weight around σ = +1 is growing. In the limiting case α → 0 the connection weight w(σ) becomes Dirac’s delta
function (142).

On the other hand we have to take into account that the self-consistency condition (126) yields an explicit
relation between the variable u and the control parameter α. Indeed, we infer from (126) and (137) the
following transcendental relation between α and u

α

γ
= − 2

3

(
ln
u+ 1
u− 1

)−1
[
2
(

ln
u+ 1
u− 1

)−1

− u

]
, (140)

which is depicted in Fig. 12a.

5.3.7 Limiting cases

The limiting value of (140) for u → ∞ is determined with the help of the expansion [10, 1.513]

ln
1 + x

1 − x
= 2

∞∑
k=1

1
2k − 1

x2k−1 , x2 < 1 , (141)

and reads lim
u→ ∞α = γ. Thus, we conclude that the case u → ∞ corresponds to the instability point

αc = fT
1 f

R
1 , which was obtained from the linear stability analysis in Sect. 5.1. Correspondingly, using

again (140), we observe that the connection weight (139) coincides in the limit u → ∞ with a uniform
distribution: lim

α↑αc

w(σ) = 1 .Another biological important special case is u ↓ 1, where we obtain from the

transcendental relation (140) lim
u↓1

α = 0 . Furthermore, considering the limit u ↓ 1 in (139) for σ �= u, we

obtain w(σ) → 0. On the other hand, integrating (139) for u ↓ 1 over σ yields 2. Therefore, we conclude
that the connection weight (139) becomes in this limit Dirac’s delta function:

lim
α↓0

w(σ) = 4δ(σ − 1) . (142)

Thus, decreasing the control parameter α means that the projection between two spheres becomes sharper
and sharper (see Fig. 12b). A perfect one-to-one retinotopy is achieved for α = 0 when the uniform and
undifferentiated formation of new synapses onto the tectum is completely terminated.
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6 Summary

In this paper we have explicitly applied our generic model for the emergence of retinotopic projections
between manifolds of different geometry to one- and two-dimensional Euclidean and spherical manifolds.
By treating retina and tectum as strings we generalized the original approach of Häussler and von der
Malsburg where both were modelled as one-dimensional discrete cell arrays. This change from discrete to
continuous variables is physiologically reasonable because of the high cell density in vertebrate animals.
By using a continuous instead of a discrete model we emphasized that we are not interested in the dynamics
of the single cell but in the evolving global spatio-temporal patterns of the system. Furthermore, continuous
variables are helpful to describe retinotopic projections between manifolds of different magnitudes as we
have seen by the example of two strings of different lengths. In case of discrete cell arrays with different
cell numbers it is not clear what a perfect retinotopy means, whereas in the continuous case a perfect one-
to-one projection can be described without offending the bijectivity of the projections. Finally, as the one-
dimensional string model could only serve as a simplistic approximation to the real biological situation, we
have also investigated under which conditions retinotopic projections between planar networks of neurons
arise. Obviously, this increase of the spatial dimension rendered the synergetic analysis so complicated
that we were only able to treat physiologically interesting special cases. While for strings retinotopy was
only possible for monotonically decreasing cooperativity functions, we found that this is no longer true
for planes.

Applying our generalized Häussler-von der Malsburg equations [1] to strings and to spheres, led to
remarkably analogous results. Both for one-dimensional strings and for spheres we have furnished proof
that our generalized Häussler-von der Malsburg equations describe, indeed, the emergence of a perfect
one-to-one retinotopy. Furthermore, we have shown in both cases that the underlying order parameter
equations follow from a potential dynamics and do not contain quadratic terms. However, in contrast to
strings, spherical manifolds represent a more adequate description for retina and tectum. Therefore, the
spherical case represents an essential progress in the understanding of the ontogenetic development of
neural connections between retina and tectum.
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