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1 Introduction

Leaving the house on a cold winter day will soon cause a feeling of cold, despite your
body’s effort to stay warm. This is due to a phenomenon called “thermal equilibration”
that will inevitably drive your body temperature towards the temperature of the envi-
ronment. The study of systems in thermal equilibrium, equilibrium thermodynamics, has
a long and successful tradition in physics. It is also known for a long time that most
systems in thermal equilibrium are well described by the Gibbs distribution, or canonical
ensemble, of statistical mechanics. The Gibbs distribution is a probability distribution for
the probabilities pj to find a system in a state with energy Ej . The probabilities pj are
given by

pj =
1

Z
e−βEj ,

where the constant Z =
∑

j e
−βEj is called the partition function and ensures that the

probabilities add up to unity and β = 1
kBT is the inverse temperature. Here kB is the

Boltzmann-constant. In quantum mechanics the Gibbs distribution is represented by a
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1.1 Structure of the document 1 INTRODUCTION

mixed state with probabilities pj to find the system in an eigenstate with energy Ej . This
state is usually called the Gibbs state.

The Gibbs distribution maximizes the entropy S = −
∑

j pj log pj under the constraint
that the expectation value of the energy is fixed to a certain value. In fact, in statistical
mechanics, roughly speaking, this state serves as a definition of temperature. If a system
is in an equilibrium state that is well described by the Gibbs distribution we say it has
thermalized.

In classical physics the validity of using the Gibbs distribution to describe systems in
thermal equilibrium follows from the micro canonical postulate. This postulate says that
all microscopic states that are compatible with the macroscopic state are equally likely to
be realized (see any standard text-book on statistical mechanics, for example ref. [1, 2]).

This probabilistic description cannot result naturally in classical physics because classi-
cal physics is completely deterministic. Any probabilistic description of a system therefore
has to enter because of subjective lack of knowledge about the system. Thus the validity
of the use of the Gibbs distribution has to follow from some external postulate.

If quantum theory is a fundamental and true description of the universe that does
not need any external postulates, the conditions for the validity of the use of the Gibbs
distribution must be derivable from quantum mechanics. One approach to this derivation
is called “Pure state quantum statistical mechanics” (for a recent review see [3]). The basic
idea is that the universe is ideally in a pure state Ψ and by looking only at a small part
of the universe one sees a mixed state of that part, which is very close to the Gibbs state.
The entropy plays a very different role in this case [4]: In classical statistical mechanics the
entropy is not a property of the state of the system but a measure of our lack of knowledge
about the state of the system. In contrast to this, in the case of quantum mechanics the
Gibbs state results as the reduction of a pure state of a larger quantum system. The entropy
is not a measure of lack of knowledge about the state of the system that is caused by our
inability to completely measure the state of the system, but results from entanglement.
Even if we had perfect knowledge about the pure state of the universe, the entropy of a
subsystem would be non-zero if the universe is not in a product state of the subsystem
and the rest of the universe.

In recent time there has been a lot of progress on rigorously showing when a subsystem
of a large generic system equilibrates [4, 5, 6, 7, 8] and if it does or does not thermalize
[9, 10].

It is interesting however not only to know if systems thermalize but also which process
is ultimately responsible for this behavior. In this thesis I investigate whether a certain
conjectured process of thermalization, the Eigenstate Thermalization Hypothesis (see sec-
tion 2.2.1), holds for two spin models which can be mapped to free fermionic models.

Furthermore I will study the role that conserved quantities play in the process of equi-
libration.

1.1 Structure of the document

In section 2 I give a very brief review of recent results about the equilibration and thermal-
ization of subsystems of large generic systems and discuss the role of conserved quantities
in the process of equilibration from a general point of view. Section 3 introduces spin and
fermionic models. In section 4 I introduce the first model and discuss the role of con-
served quantities in equilibration for this model. I also discuss whether the Eigenstate
Thermalization Hypothesis (ETH) holds. Using numerical results the ETH is studied from
the viewpoint of the XX-model in section 5. Throughout the whole document I will set
~ = 1.
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2 EQUILIBRATION AND THERMALIZATION

2 Equilibration and thermalization
In this section I will give a brief review of equilibration and thermalization and some recent
important results in understanding these mechanisms from a quantum mechanical point
of view. Importantly, these results do not make use of artificial concepts like ensemble
averages which can be found in almost all text-books on statistical mechanics.

As mentioned in the introduction, roughly speaking, thermalization means equilibration
towards the Gibbs state. While we know from experience that most systems in nature will
evolve towards such a state it is quite difficult to precisely formulate when and how this
happens. As discussed in [6] it is useful to split the problem into different parts, dealing
with equilibration separately from thermalization. We begin with equilibration.

We first define the time-average and trace-distance as they will be used often throughout
this section.

Definition 1 (Time-Average) The time average ω of a state described by a density matrix
ρ(t) is defined as

ω = ⟨ρ(t)⟩t = lim
τ→∞

1

τ

∫ τ

0

ρ(t)dt. (1)

2

Definition 2 (Trace-distance) The trace-distance of two states ρ1 and ρ2 is defined as

D(ρ1, ρ2) =
1

2
Tr

(√
(ρ1 − ρ2)

2

)
(2)

= max
0≤A≤1

(Tr (Aρ1)− Tr (Aρ2)) , (3)

where the maximization is taken over Hermitian operators. Note that the trace-distance
directly measures the physical distinguishability. 2

2.1 Equilibration

As equilibration is a necessary condition for thermalization I first review what equilibra-
tion means in a quantum mechanical system and how it can be described mathematically.
Let me stress that equilibration is not sufficient for thermalization: A system that ther-
malizes has to equilibrate but a system that equilibrates must not necessarily equilibrate
towards its Gibbs state.

In classical physics, or generally in what is usually called a dynamical system, an equi-
librium state is a state that does not change over time. Due to the unitary evolution of a
closed quantum mechanical system, however, a pure state of a closed system will never
equilibrate in the sense that it does not change over time at all. The only exception to this
is the situation when the system starts in an eigenstate of its Hamiltonian. Therefore it is
necessary to introduce a more general notion of equilibration in quantum systems. A first
guide into a more general notion of equilibration is that generally only certain observables
A can be measured, but not the state itself. In accordance to recent literature (see for
ex. [6, 9, 10]) I will therefore say that an observable equilibrates if its expectation value
⟨A⟩ = Tr (Aρ(t)) is close to its time-average for most times t. Often it is only possible to
measure local observables with a support only on a small part of the system. It therefore
makes sense to say that a subsystem equilibrates if all observables with support only on
this subsystem equilibrate. Mathematically, this condition is equivalent to saying that the
trace-distance of the state of the subsystem ρS to its time-average ωS = TrB (ω) is very
small for most times. Note that an equilibrium state of a system is in general not indepen-
dent of the initial state of the system and therefore generally not unique. For example all
the eigenstates of the Hamiltonian have different equilibrium states, namely themselves.
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2.1 Equilibration 2 EQUILIBRATION AND THERMALIZATION

This notion of equilibration does not require that the equilibrium state commutes with
the Hamiltonian of the system, although, of course, every state that commutes with the
Hamiltonian is an equilibrium state. In this sense, the definition therefore agrees with
the classical definition. Furthermore I want to stress that if a state equilibrates then, by
definition, it has to equilibrate to its time-average.

Using this notion of equilibration one can now ask if and when subsystems of bigger
system equilibrate. The following results by Linden et al. [6] show that most subsystems
of large enough systems in fact do equilibrate. The guiding idea is to think of a small
system with limited degrees of freedom that is in contact with a large heat bath which
has very many degrees of freedom. Thus consider a large system partitioned into a (small)
subsystem, with Hilbert-space HS of dimension dS , and a (large) bath, with Hilber-space
HB of dimension dB . The partition of the total system can be completely arbitrary as
long as the subsystem is much smaller then the bath. The complete Hilbert space is then
given by the tensor product HS ⊗HB . Let the Hamiltonian of the total system be given
by H =

∑
k Ek |Ek⟩⟨Ek |, where | Ek⟩ are the eigenstates of the Hamiltonian. Linden et

al. also assume that the Hamiltonian has non-degenerate energy-gaps. This assumption
already appeared in a paper by von Neumann [11] and states that for any four eigenstates
Ek, El, Em, En we have that Ek − El = Em − En implies k = l and m = n or k = m
and l = n. This a very weak condition, because any small random perturbation ensures
this condition, and can be viewed as an ergodicity condition. For generic large systems in
nature we can therefore assume that it holds.

A pure state of the total system is given by

|Ψ(t)⟩ =
∑
k

cke
−iEkt |Ek⟩

with density matrix ρ =|Ψ(t)⟩⟨Ψ(t) |. The state of the subsystem ρS is given by tracing
out the bath, so ρS = TrB (ρ) and correspondingly ρB = TrS (ρ). The dynamics of the
subsystem are governed by the dynamics of the total system as

ρS(t) = TrB (ρ(t)) .

Particularly the subsystem does not evolve under unitary evolution governed by its Hamil-
tonian HS.

Due to the non-degenerate energy-gaps the time-averaged density matrix of the total
system is simply given by

ω =
∑
k

|ck|2 |Ek⟩⟨Ek| .

The time-average of the subsystem is ωS = TrB (ω). A convenient quantity is the effective
dimension of a state defined as follows.

Definition 3 (Effective dimension [6]) The effective dimension of a state |Ψ(t)⟩, as defined
above, with a time-average density matrix ω is given by

deff(ω) =
1

Tr (ω2)
=

1∑
k |ck|4

. (4)

2

The statement that subsystems usually equilibrate can then be made precise by the fol-
lowing theorem.

Theorem 1 (Equilibration of subsystems [6]) Let Ψ ∈ H evolve under a Hamiltonian with
non-degenerate energy gaps. Then the average distance of the state of any subsystem ρS to its
time-average ωS is bounded as

⟨D(ρS(t), ωS)⟩t ≤
1

2

√
dS

deff(ωB)
≤ 1

2

√
d2S

deff(ω)
. 2
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2 EQUILIBRATION AND THERMALIZATION 2.1 Equilibration

The theorem says that a subsystem equilibrates as long as the effective dimension explored
by the bath is much bigger then the dimension of the subsystem’s Hilbert-space.

In ref. [6] it is also shown that for most pure states of the total system the effective
dimension is very large, even in the case of a very small uncertainty in the energy. Fur-
thermore the authors show that almost all states chosen from a large restricted subspace
of H give (almost) the same time-averaged state. This shows that the equilibrium value is
fairly independent of the initial state.

2.1.1 The role of conserved quantities

From classical physics we know that conserved quantities, or integrals of motion, are
very important in the evolution of dynamical systems. Conserved quantities are, in the
classical case, quantities that do not change over time. The reason for the importance of
these quantities in the evolution of a system is intuitively very clear: Once the values of all
conserved quantities are fixed they cannot change anymore. If there are a lot of conserved
quantities the system can therefore only access a very small subset of all possible states.
This means that the state of a system depends a lot on the initial conditions if there are
many conserved quantities. In quantum mechanical systems the situation is different as
observables are not given by real numbers but by Hermitian operators. Measuring these
operators can lead to different outcomes even when the system is in the same state.

I will now discuss how conserved quantities can be defined in quantum systems and
how they influence the equilibration of a system.

Let us define that a conserved quantity is an observable whose expectation value does
not change under the unitary evolution of the system. The condition for this is that the
observable commutes with the Hamiltonian. In general it is useful to distinguish local
and global conserved quantities. To discuss these, consider a system partitioned into a
subsystem, described by a Hilbert-space HS and a bath, described by a Hilbert-space HB .
The total Hilbert-space is again HS ⊗HB . The Hamiltonian governing the dynamics of the
system may be written as H = HS +HB +HSB where HS and HB only act on the system
and bath, respectively, and HSB contains the interactions. A local conserved quantity is an
observable that commutes with the Hamiltonian of the total System but only has support
on a subsystem, i.e. it is of the form A = AS⊗1. A global conserved quantity is a conserved
quantity that acts non-trivially on the total system.

There is ongoing debate about the role of local and global conserved quantities in the
process of equilibration and thermalization, therefor I would like to list some facts about
the role of conserved quantities in equilibration. Some of these might seem trivial but
nonetheless it is important to state them. The first important point to make is that the
expectation values of conserved quantities do not change over time. Therefore they are
fixed by the initial conditions and the evolution of the total closed system is restricted to
a subset of states. This has important consequences for equilibration. It was shown in
ref. [9] that the equilibrium state of any initial state has to be the one that maximizes its
entropy while keeping the expectation values of all conserved quantities fixed. As this is
a very important insight let me reproduce the proof here.

Proof (Equilibration to maximum entropy state [9]) Let Pj =
∑

k∈Ij
|Ek⟩⟨Ek| be the pro-

jectors onto the (possibly degenerate) subspaces of the Hamiltonian H =
∑

k Ek |Ek⟩⟨Ek|.
The sets Ij collect the different eigenstates with same energy, so Ek = El if k, l ∈ Ij . Then
the time average of a state ρ(t) =

∑
j,k cjc

∗
ke

−i(Ej−Ek)t |Ej⟩⟨Ek | is clearly given by

ω =
∑
j

Pjρ(t)Pj . (5)

As the von Neumann entropy is Schur-concave it follows directly by the Pinching Lemma
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2.1 Equilibration 2 EQUILIBRATION AND THERMALIZATION

(see ref. [12]) that this is the state with maximum entropy that gives the same expectation
values as ρ(t) of all conserved quantities. �

Given all conserved quantities this state can be calculated fairly easy. To do this let
G be a linear basis of the conserved quantities. Thus, every conserved quantity can be
written as a linear combination of the elements of G. Let the total system be described
by a finite-dimensional Hilbert-space H. Then |G|, the number of elements in G, is finite.
Now suppose the system is initially in some state ρ, which can be mixed or pure. Then all
the expectation values ⟨Gα⟩ρ = Tr (ρGα) of the conserved quantities Gα ∈ G with respect
to ρ are fixed. The evolution of the system is then restricted to the set of states

{σ | Tr (σGα) = ⟨Gα⟩ρ α = 1, . . . , |G|} .

Then the state with maximum von Neumann entropy in this set is given by

ω =
1

Z
e−

∑
α λαGα , (6)

where the factor Z ensures Tr (ω) = 1 and the constants λα are chosen in such a way that
the expectation values of the conserved quantities fulfill ⟨Gα⟩ω = ⟨Gα⟩ρ.

Proof (State with maximum entropy) The proof is almost exactly the same as the proof
of extremality of the entropy of the canonical ensemble as found in [1]. The only difference
is the number of expectation values that are fixed. Let the relative entropy given by

S (σ||ρ) = Tr (σ (lnσ − ln ρ)) ≥ 0, (7)

see for example [13]. Let σ be a state with the same expectation values for the conserved
quantities Gα as ω and otherwise arbitrary. The von Neumann entropy of ω is

S (ω) = lnZ +
∑
α

λα⟨Gα⟩ω.

From eq. 7 it follows that

S (σ) ≤ Tr (σ ln ρ)

= lnZ +
∑
α

λα⟨Gα⟩σ = S (ω) ,

because we required ⟨Gα⟩σ = ⟨Gα⟩ω . �

The state ω was conjectured to be the equilibrium state of a system, if it equilibrates at all,
and called the Generalized Gibbs Ensemble (GGE) by Rigol et al. [14, 15, 16]. By the preceding
argument it is clear that it has to be this one.

The number of conserved quantities of a system grows exponentially with the system
size. This is due to the fact that the Hilbert-space grows exponentially with the system size.
Given all conserved quantities of a system together with their initial expectation values it is
therefore easy to write down the equilibrium state ω symbolically. From a computational
point of view however it is very difficult to calculate this state. An interesting question
to ask is therefore whether it is really necessary to consider all conserved quantities of
the total system if one is only interested in the behavior of some small subsystem. It is
imaginable that the equilibrium value of a subsystem does not depend on the expectation
values of observables that only act on different subsystem very far away. One of the main
results of this thesis is that this is indeed the case for a certain spin-model.

The question of the role of conserved quantities in equilibration is also closely connected
to the notion of integrability, both in classical as well as in quantum mechanics. While

6



2 EQUILIBRATION AND THERMALIZATION 2.2 Thermalization

integrability is a well defined concept in classical systems it is quite difficult to define in
the quantum mechanical setting. In fact there are multiple different definitions in the
quantum case. They range from the notion that a system is integrable if it can be solved
to the requirement of certain sets of conserved quantities. For a recent discussion see [17].
Until recently there seemed to be a consensus that non-integrable systems thermalize and
systems that are integrable do not thermalize. Especially if there is no well-defined concept
of integrability such a statement has to be questioned and it was indeed shown that there
are non-integrable system that do not thermalize [9]. Furthermore, in ref. [18] it was shown
that there is a large class of integrable systems that locally relax to an equilibrium state.
In this class of systems it is even possible to compute the exact time-window in which it
happens.

Concluding we can say that the results by Linden et al showed that equilibration is a
common feature of subsystems of large quantum systems. Conserved quantities play an
important role in the process of equilibration play because they restrict the dynamics to
a smaller subset of states. Given all conserved quantities and their expectation values it is
possible to calculate directly the equilibrium state. In this thesis I study if the equilibrium
state of a subsystem can also be computed with incomplete knowledge of the conserved
quantities, i.e. when only the expectation values of the local conserved quantities on the
subsystem are known. We will see a model where it is sufficient to know the expectation
values of the local conserved quantities that only have support on the subsystem together
with its boundary.

2.2 Thermalization

We speak of thermalization of a (sub)-system if it equilibrates and can be well described
by the Gibbs state

ρGibbs =
1

Z
e−βHS ,

where HS is the Hamiltonian describing the dynamics of the system. This formula is
used to calculate expectation values of observables for systems at finite temperature.
The results of calculations with this formular are often in very good agreement with
experiments. It is therefore of fundamental interest and importance to understand when
and why the Gibbs state gives a good description of a system’s state. In this section I
briefly discuss recent results that show that a large class of quantum mechanical systems
can be expected to thermalize.

The results by Linden et al [6], summarized in section 2.1, show that equilibration is a
very common property for generic systems. Equilibration alone, however, does not have
to lead to a state that is locally well described by the Gibbs state. Although the Gibbs state
looks very similar to the state defined in eq. 6 it is in general not such a state. In fact
the subsystem’s Hamiltonian is in general not even a conserved quantity. Therefore the
equilibration results do not show that thermalization generally occurs.

Recently, however, Riera et al. proved [10] that quantum mechanical systems thermalize
under very general conditions. Like Linden et al. they consider a large closed system
partitioned into a subsystem and a bath. Their first assumption is that the Hamiltonian
of the total system has non-degenerate energy gaps. Furthermore they require that the
interaction between the subsystem and the bath is sufficiently weak. Unlike in the case of
traditional perturbation theory, sufficiently weak here means that the infinite-norm of the
interaction-Hamiltonian has to be much smaller than the uncertainty ∆ in the energy E
of the state of the total system. Traditional perturbation theory is usually only useful if the
perturbation is small compared to the gaps between the eigenvalues of the Hamiltonian.
In macroscopic systems these gaps can become exponentially small, therefore this new
condition of sufficiently weak interactions is much more realistic.

7



2.2 Thermalization 2 EQUILIBRATION AND THERMALIZATION

The last assumption is that the density of states of the bath can be approximated well by
an exponential. For generic, non-degenerate, large systems this is a very common feature
which essentially already follows from combinatorics.

Riera et al. then show that starting with a state with uniform overlap to eigenstates
of the total Hamiltonian that have energy inside the interval [E,E +∆] and zero overlap
outside that interval, a subsystem’s state equilibrates toward its Gibbs state. In particular
this result shows that a micro canonical state is locally well described by a Gibbs state.

For generic large systems we can therefore expect that small subsystems can be well
described by the Gibbs state.

Note that when thermalization occurs, the subsystem has to equilibrate to a state that
is fairly independent of the initial state of both the subsystem and the bath.

2.2.1 Eigenstate Thermalization Hypothesis

Ultimately the arguments for thermalization are a combination of measure-theoretic argu-
ments and perturbation arguments. Thereby they do not show what process is responsible
for the approach to thermal equilibrium. There are a number of proposed processes that
can explain thermalization, but, so far, none of them could be proven to hold in general.
One of them, the so-called Eigenstate Thermalization Hypothesis (ETH), has received a lot
of attention recently [14, 15, 19, 20]. It was first proposed independently by Deutsch and
Srednicki [21, 22]. Here, I give the definition of ref. [15], which I will call the strong ETH:
Let A be any local observable with support only on a small subsystem, of maximal size m,
and |En⟩ an eigenstate with energy En. Then the ETH holds if the expectation value of A
with respect to |En⟩ equals the expectation value of A with respect to a micro canonical
ensemble with mean energy En:

⟨En | A |En⟩ = ⟨A⟩m.c. ∀A with support ≤ m.

There is some ambiguity in this definition as it does not specify the energy-uncertainty of
the micro canonical ensemble. Obviously the ETH holds if the energy-uncertainty is zero
because then the micro canonical ensemble is just the eigenstate |En⟩. In experimental
conditions, of course, the energy-uncertainty is given by the ability of an experimentalist
to prepare the state of the system. For macroscopic systems it will therefore include a big
number of eigenvalues of the Hamiltonian of the total system.

If we combine the ETH with the results of Riera et al., summarized in the last section,
we can expect that any system that fulfills the ETH can locally be well described by the
Gibbs state if it is in an eigenstate. With the additional assumption that the temperature
of the local Gibbs state is almost the same for two eigenstates which have almost the
same energy, any state with small energy uncertainty could locally be well described by
the Gibbs state. The assumption about the relation between the local temperature and the
global energy is necessary, because a sum of two Gibbs states with different temperatures
is in general not a Gibbs state, so the Gibbs states of a system do not form a convex set.
If the assumption, that the inverse temperature depends smoothly on the total energy,
holds, the ETH could be considered as a plausible explanation of thermalization, already
on the level of eigenstates.

This is a very strong formulation of the ETH. In the original work by Srednicki the
author does not claim that all local observables behave in the way described above, but
only conjectures this to be true for the momentum of the particles of a hard-sphere gas.
However, one could hope that the hypothesis generalizes to a more general setting.

An additional point I want to make is that the question if the strong ETH can hold, is
connected to the topic of local and global conserved quantities. To see this, suppose we
are given two eigenstates |E1⟩, |E2⟩, with energies E1 u E2, of the Hamiltonian H of the
total system. The strong ETH then implies that for all local observables A, with a support

8



3 SPIN SYSTEMS AND FERMIONIC MODELS

that is small enough, we have

⟨E1 | A |E1⟩ = Tr
(
AρS

Gibbs(β1)
)
u Tr

(
AρS

Gibbs(β2)
)
= ⟨E2 | A |E2⟩,

where ρS
Gibbs(βj) is the Gibbs state of the subsystem, with inverse temperature βj , when

the total system has energy Ej . It therefore implies, that if we fix the expectation value of
the global conserved quantity H , the expectation values of all local observables on a small
enough subsystem are fixed. This also includes conserved quantities. In such a system the
expectation values of the local conserved quantities therefore cannot be independent of
the expectation value of the Hamiltonian of the system. Concluding, a sufficient condition
to falsify the strong ETH, for subsystems up to size m, is the existence of a set of local
measurements, with support of size at most m, that can distinguish two eigenstates of H
which have almost the same energy.

In this thesis we will see one model where it is possible to show analytically that the
strong ETH cannot be fulfilled. Furthermore we will see numerical results indicating that
the ETH indeed does hold in the case of the XX-model.

3 Spin systems and fermionic models

This section gives a brief introduction to spin systems and fermionic models and the tools
used in the study of the models in this thesis. It also sets up most of the notation that
is later used. Spin-1/2 systems are probably the most widely studied models in theoreti-
cal physics. One of the reasons is that every spin is a two-level system. Therefore they
are structurally the simplest models that can have excitations. This sometimes admits
analytical solutions, which are in general very rare. At the same time, even in the case
of one-dimensional models, they can already show a rich variety of phenomena. Thus
they constitute a good testing ground for physical theories. Recently, as a natural exam-
ple of qubits, they received an additional amount of attention in the study of quantum
information and quantum computation.

Fermionic systems are a natural counterpart to spin systems. Due to the Pauli-principle
a fermionic site is also a two-level systems and in one dimension it is possible to map
a fermionic system to a spin system and vice-versa. In some cases this allows a much
simpler treatment.

3.1 Spin systems

A system of spins is generally thought of as a graph G = (V,E) with vertex set V and edge
set E. Every vertex (or site) of the graph has a local Hilbert-space H2 ≃ C2 attached to
it which represents a spin at this site. The simplest example of such a system is a linear
chain of N spins with a total Hilbert-space dimension 2N . The Hamiltonian of the system
is often considered to be of the form H =

∑
j hj where every term hj only acts on k spins

at once. This property is usually referred to as k-locality. A model with only next-neighbor
and on-site interactions is therefore 2-local. A particular example of such a system is the
XY-model [23] with Hamiltonian

H = −1

2

∑
<i,j>

(
1 + γ

4
XiXj +

1− γ

4
YiYj

)
− λ

2

N∑
j=1

Zj , (8)

where < i, j > denotes the sum over nearest neighbors, γ is called the anisotropy param-
eter and λ is a magnetic field in z-direction. The operators Xj , Yj and Zj denote the Pauli

9



3.2 Fermionic models 3 SPIN SYSTEMS AND FERMIONIC MODELS

operators σx, σy and σz acting only on the j-th spin. Hence

Xj = 1⊗ · · · ⊗ 1⊗ σx ⊗ 1⊗ · · · ⊗ 1

and Yj , Zj analogously. In the isotropic case γ = 0 the model is called XX-model.

3.2 Fermionic models

A fermionic system is usually described as a collection of N sites. A site is called occupied
or filled if there is a fermion at the site and empty otherwise. The Hamiltonian of such a
system is written in second quantization as a sum of annihilation and creation operators
fj , f

†
j that obey the canonical anti-commutation rules{

f†
i , fj

}
= δi,j ,

{
f†
i , f

†
j

}
= 0, {fi, fj} = 0,

where {A,B} = AB + BA. Due to the Pauli-principle there can be either one or zero

fermions at each site, thus f2
j = f†

j

2
= 0. A system described by a Hamiltonian that is

quadratic in the annihilation and creation operators, i.e. of the form

H =
1

2

N∑
i,j=1

(
f†
jAi,jfj − fiAi,jf

†
j + fiBi,jfj − f†

i Bi,jf
†
j

)
, (9)

with real matrices A,B, is called quasi free [24]. For H to be Hermitian it is necessary that
A = A⊤ and B = −B⊤.

It is always possible to write a quadratic Hamiltonian H in the form

H =
∑
k

λkη
†
kηk,

where the η†k, ηk are again fermionic creation and annihilation operators, respectively,
which in this case are usually referred to as modes instead of sites. An eigenstate of such
an Hamiltonian can be written in the occupation number basis as

|k1, . . . , kN ⟩, kj ∈ {0, 1},

where kj = 1 if the j-th mode is occupied and kj = 0 if it is empty.
As a mode can either be filled with one fermion, or be empty, a system of N fermionic

sites is described by the tensor-product of N Hilbert-spaces that are each isomorphic to
C2. The total Hilbert-space therefore has dimension 2N .

When dealing with fermionic systems it is often useful to introduce so-called Majorana-

operators xj = 1√
2

(
f†
j + fj

)
, pj = −i√

2

(
f†
j − fj

)
as coordinates. Note that they are Her-

mitian. With these at hand, the Hamiltonian of a fermionic system can also be written as a
sum of Majorana-operators. Let ω = (x1, p1, . . . , xN , pN )⊤, such that xj = ω2j−1, pj = ω2j .
A quasi-free system can be written as,

H = iω⊤hω,

with h ∈ R2N×2N and h = −h⊤. The Majorana-operators as defined above fulfill the
anti-commutation relations

{ωi, ωj} = δi,j ,

which are preserved by orthogonal transformations.

10



3 SPIN SYSTEMS AND FERMIONIC MODELS 3.2 Fermionic models

3.2.1 Covariance matrix

For fermionic systems the covariance matrix γ is defined as the matrix with elements

γi,j = i⟨[ωi, ωj ]⟩ = 2i⟨ωiωj⟩ − iδi,j . (10)

Note that γ = −γ⊤. Eigenstates, ground states, and Gibbs states of quasi free fermionic
systems are Gaussian [25, 26]. Thus they are completely described by their first and second
moments. For fermionic systems the first moments always vanish as the Hamiltonian has
to preserve the total number of fermions due to the super-selection rule of the parity
of fermions. Hence, the eigenstates, ground states and the Gibbs state of a fermionic
quasi-free system are completely described by their covariance matrices.

As the covariance matrix γ and the matrix h that defines the coupling in the Hamiltonian
are skew-symmetric 2N × 2N matrices they can be brought into a normal-form by an
orthogonal transformation R,

RγR⊤ =
⊕
j

µj

(
0 1

−1 0

)
=
⊕
j

µjJ2,

where the real numbers µj are given by the imaginary part of the eigenvalues of γ. If γ is
a fermionic covariance matrix µj ∈ [−1, 1].

The energy expectation value of a state can directly be computed from the covariance
matrix and h:

Lemma 1 (Energy expectation value) LetH = iω⊤hω as before and let ρ be a state. Then the
expectation value of H is given by

⟨H⟩ = 1

2
Tr
(
γ⊤h

)
= −1

2
Tr (γh) .

Proof The proof is straightforward calculation:

⟨H⟩ = Tr (ρH) = Tr
(
ρiω⊤hω

)
=
∑
i,j

Tr (ρhi,j iωiωj) =
∑
i,j

1

2
hi,jγi,j =

1

2
Tr
(
γ⊤h

)
,

where we have used that hi,i = 0 because h = −h⊤. �

As we are interested in thermalization the covariance matrix of a Gibbs state will be very
important later. Given the Hamiltonian in normal-form it is particularly easy to calculate
the covariance matrix of a Gibbs state as shown by the following Lemma.

Lemma 2 (Covariance Matrix of Gibbs state) Let the Hamiltonian of a free fermionic system
be given by

H = iω⊤hω,

with ω = (ω1, . . . , ω2N )
⊤ and h = ⊕jϵjJ2. Then the covariance matrix of the Gibbs state

ρGibbs = Z−1 exp(−βH) is

γ = −
N⊕
j=1

tanh (ϵjβ)J2. (11)

11
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Proof Using the commutation relations for the Majorana-operators the Hamiltonian can
be written as

H =
∑
j

ϵj2iω2j−1ω2j .

Note that all terms in the sum commute and (2iω2j−1ω2j)
2 = 1. It therefore follows by

lemma 3 (see section 4) that

e−βH =
∏
j

(cosh(ϵjβ)1− sinh(ϵjβ)2iω2j−1ω2j) .

The Gibbs state therefore reads

ρGibbs =
∏
j

(
1

2
1− 1

2
tanh(ϵjβ)2iω2j−1ω2j

)
.

Looking at the anti-commutation relations for the Majorana-operators and noting that
Majorana-operators are traceless it is clear that

γi,j = 2iTr

(
ωiωj

∏
l

(
1

2
1− 1

2
tanh(ϵlβ)2iω2l−1ω2l

))
− iδi,j

=

 − tanh (ϵlβ) if i = 2l − 1, j = 2l
+ tanh (ϵlβ) if i = 2l, j = 2l − 1
0 otherwise

.

Hence

γ = −
N⊕
j=1

tanh (ϵjβ) J2. �

Corollary 1 Note that J2 = iwσzw
† with

w =
1√
2

(
1 1
i −i

)
.

Therefore h can be brought into diagonal-form by first bringing it into the normal-form and
then applying the transformation w:

h = Rhn.f.R⊤ = R
N⊕
j=1

ϵjJ2R
⊤

= R

N⊕
j=1

iϵjwσzw
†R⊤

= R

 N⊕
j=1

w

 N⊕
j=1

iϵjσz

 N⊕
j=1

w†

R⊤.

Together with the facts tan(ix) = i tanh(x) and tanh(−x) = − tanh(x) this shows

γGibbs = − tan (βh) . 2

12



4 FIRST MODEL

3.2.2 Jordan-Wigner transformation

A system composed of N spins and a system of N fermionic sites both have Hilbert-spaces
H ≃ (C2)⊗N of dimension 2N . It is therefore tempting to identify an occupied fermionic
site with a spin-up or spin-down state in a spin model. Indeed there exists an isomorphism
between one-dimensional spin-models and one-dimensional fermionic models, the Jordan-
Wigner transformation [27]. Given a spin system it is defined by setting

Zi = 1− 2f†
i fi

S+
i =

i−1∏
k=1

(
1− 2f†

kfk

)
f†
i

S−
i =

i−1∏
k=1

(
1− 2f†

kfk

)
fi,

where S±
i = (Xi ± iYi) /2. A spin-down state in the spin-model is then equivalent to an

occupied site in the fermionic model. Note that due to the factors
∏i−1

k=1

(
1− 2f†

kfk

)
this

transformation does in general not preserve locality.

4 First model

Let us now turn to the first model. This model is primarily used to study whether it
is really necessary to consider all conserved quantities when calculating the equilibrium
state of a subsystem or if it is sufficient to consider only the local conserved quantities. I
will also discuss if the Eigenstate Thermalization Hypothesis holds.

The model is a linear chain of N spins. We first define the Hermitian operators

H =

N∑
i=1

λiZi,

and

V =
N∑
i=1

XiXi+1,

where we assume periodic boundary conditions, such that XNXN+1 = XNX1. The op-
erator H can be regarded as a Hamiltonian of N spins without any interaction but with
a local magnetic field in z-direction of strength λi. The parameters λi are thought of
as random numbers chosen from a Gaussian distribution with mean λ and variance σ2,
where the variance is considered to be small. The important point is, that it destroys
any degeneracies of the Hamiltonian H . Our model Hamiltonian H is now given by the
conjugation of H with U = exp (iV τ):

H = UHU† = eiV τHe−iV τ

=
N∑
i=1

eiV τλiZie
−iV τ .

The resulting Hamiltonian still has the same spectrum as H and one can think of it as a
rotated version of H . I will sometimes refer to it as the rotated Hamiltonian. From the
general arguments in ref. [10] it can be expected that such a system thermalizes. If we
write a local spin-up state as | 1⟩ = (1, 0)⊤ and the spin-down state as | 0⟩ = (0, 1)⊤ the

13



4 FIRST MODEL

eigenstates of H are

|k1, . . . , kN ⟩ =|k1⟩ ⊗ . . .⊗ |kN ⟩, kj ∈ {0, 1}

and therefore the set of eigenstates of H is

{eiV τ |k1, . . . , kN ⟩ | kj ∈ {0, 1}}. (12)

In the following it will often be necessary to explicitly calculate how operators like eaA,
where a is a real or complex number and A an operator, act on states or other operators.
The following Lemma will often be useful in these calculations.

Lemma 3 Let A be any operator with the property that A2 is proportional to the identity. We
set A2 = α1 with α ∈ R. Let a ∈ C. Then

eaA =

[
cosh(Re(a)

√
α)1+

1√
α

sinh(Re(a)
√
α)A

] [
cos(Im(a)

√
α)1+

i√
α

sin(Im(a)
√
α)A

]
,

(13)
where Re(·) and Im(·) denote the real- and imaginary part, respectively.

Proof As e(Re(a)+iIm(a))A = eRe(a)AeiIm(a)A it suffices to treat the real and imaginary part
of a separately and then multiply them. So let a ∈ R. By writing out the series expansion
of eaA one gets

eaA =
∞∑
k=0

a2kA2k

2k!
1+

∞∑
k=0

a2k+1A2k

(2k + 1)!
A

=
∞∑
k=0

a2k
√
α
2k

2k!
1+

1√
α

∞∑
k=0

a2k+1
√
α
2k+1

(2k + 1)!
A

= cosh(a
√
α)1+

1√
α

sinh(a
√
α)A.

The case when a is purely imaginary then follows from sinh(ix) = i sin(x) and cosh(ix) =
cos(x).

�

Locality of the rotated Hamiltonian The rotation of H by U changes the locality of H .
To see this we calculate how conjugation by U acts on one term ZJ . As all the operators
Xj , Xk commute we can write U as

U =
∏
j

eiτXjXj+1 =
∏
j

uj ,

where each uj is unitary and has support on sites j and j + 1. As uju
†
j = 1 it follows that

UZjU
† = uj−1ujZju

†
j−1u

†
j ,

which is a 3-local operator that acts on the sites j − 1, j, j + 1.

14



4 FIRST MODEL 4.1 Conserved quantities

4.1 Conserved quantities

We have seen above that the going from the system described by H to the model is
basically done by “conjugating everything by U = exp (iV τ)”. Is this also true for the
conserved quantities? Let o be the set of operators conserved by H ,

o = {A | [H,A] = 0} ,

and O the set of operators conserved by the model Hamiltonian,

O =
{
B |

[
UHU†, B

]
= 0
}
.

We ask if O = UoU† =
{
UAU† | [H,A] = 0

}
. Let B ∈ O. Then U† [UHU†, B

]
U =[

H,U†BU
]
= 0. So U†BU ∈ o, which just means that every B can be written as the

conjugation of an A. By an analog argument it is possible to show that UAU† ∈ O for all
A ∈ o, so UoU † = O.

To find all the conserved quantities of the model it therefore suffices to find all quantities
conserved by H and conjugate. Note however again that conjugation does not preserve
locality.

4.1.1 Projectors of unrotated Hamiltonian

Let Pn denote the projector onto the eigenspace of the n-th eigenvalue En of H . It has
the form

|k1, . . . , kN ⟩⟨k1, . . . , kN|=|k1⟩⟨k1| ⊗ · · · ⊗ |kN ⟩⟨kN|,

where of course k1, . . . , kN ∈ {0, 1}. Depending on the value of kj the projector onto the
subspace of the j-th spin in this state can be written as

1⊗ · · · ⊗ 1⊗ |kj⟩⟨kj| ⊗1⊗ · · · ⊗ 1 =
1± Zj

2
,

with − in the case kj = 0 and + if kj = 1. Therefore Pn has the form

Pn =
1

2N
(1± Z1) · · · (1± ZN ) .

As the Hamiltonian H is given by

H =
∑
n

EnPn,

it is clear that every such projector is a conserved quantity. Note that it is not a local
conserved quantity.

As the Hamiltonian is non-degenerate the 2N projectors Pn form a linear basis for the
conserved quantities. The relation Pn′Pn = Pnδn.n′ implies that they are also algebraically
independent and clearly commute.

4.1.2 Strings of Pauli-Z-operators

All the projectors Pn are products of N terms of the form 1±Zj

2 . Multiplying out all the
factors yields a sum of the form ∑

Λ⊆Ω

±2−|Λ|ZΛ,

where Ω = {1, . . . , N} is the set of all spins and ZΛ =
∏

j∈Λ Zj is an operator with support
only on Λ. The sign in each term depends on the state associated with the projector.

15



4.1 Conserved quantities 4 FIRST MODEL

All 2N operators ZΛ clearly commute with H individually and commute pairwise. Every
projector is a linear combination of all ZΛ and therefore every conserved quantity can be
written as a linear combination of the operators ZΛ. Note that while the ZΛ are linearly
independent they are not algebraically independent as

ZΛ1ZΛ2 = ZΛ1△Λ2 ,

where Λ1 △ Λ2 is the symmetric difference (Λ1/Λ2) ∪ (Λ2/Λ1). Also while the projectors
Pn are global operators the ZΛ are local operators with support of size |Λ| and each set

ZΓ = {ZΛ | Λ ⊆ Γ}

is a basis for the local conserved quantities on the subsystems Γ.

4.1.3 Time-average of states

If a system thermalizes then it has to equilibrate, and if it equilibrates it has to equilibrate
to its time-average. It is therefore important to know how time-averages behave in the
model. We will now see how the time average of a state ρ relates to the time-average of
ρ conjugated by the unitary operator U = exp (iV τ). To do this we write H as

H =
∑
n

EnPn,

where Pn are the projectors onto the subspaces with energy En. The time-average of a
state ρ is

⟨ρ⟩t = lim
T→∞

1

T

∫ T

0

∑
m,n

ei(Em−En)tPnρPm dt (14)

=
∑
n

PnρPn. (15)

The time-average of the rotated state UρU† is

⟨UρU†⟩t = lim
T→∞

1

T

∫ T

0

e−iUHU†tUρU†eiUHU†t dt

= lim
T→∞

1

T

∫ T

0

Ue−iHtU†UρU†UeiHtU† dt

= U

(
lim

T→∞

1

T

∫ T

0

e−iHtρdt

)
U† = U⟨ρ⟩tU†.

So it does not matter if time-averaging or conjugation by U is done first.

4.1.4 Maximum entropy or equilibrium state

Let us proceed to calculate the maximum entropy state for any given expectation values of
the set of conserved quantities. Recall that the maximum entropy state is given by an ex-
ponential of a linear combination of all conserved quantities. As exp(UAU †) = U exp(A)U†

we can first calculate the maximum entropy state for the unrotated Hamiltonian and then
conjugate to go over to the rotated Hamiltonian. We therefore begin with the maximum
entropy state of the unrotated Hamiltonian.

As later only local observables are of interest, it is convenient to take the setZ = {ZΛ}Λ⊆Ω

as linear basis for the conserved quantities. Note that all ZΛ ∈ Z commute pairwise. Let
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us introduce an index set Γ that counts the 2N = 2|Ω| different subsets of Ω = {1, . . . , N}.
Then the set {Λk}k∈Γ is the set of all subsets of Ω. The maximum entropy state, or GGE,
is given by

ω ∝ exp

(
−
∑
k∈Γ

βkZΛk

)
=
∏
k∈Γ

exp (−βkZΛk
) ,

because all the ZΛk
commute. By lemma 3 it follows that

ω ∝
∏
k∈Γ

(cosh (βk) 1− sinh (βk)ZΛk
)

=
∑
Ξ⊆Γ

∏
j∈Ξc

cosh (βj)
∏
k∈Ξ

(−1) sinh (βk)ZΛk
,

where Ξc = Γ/Ξ. Note that
∏

k∈Ξ ZΛk
= ZΛ for some Λ ⊆ Ω. Collecting all terms where

the product
∏

k∈Ξ ZΛk
yields the same ZΛ we can write the state as

ω =
∑

Λ⊆Ω,Λ ̸=∅

cΛZΛ + c∅1.

Normalization requires that c∅ = 2−N . All the expectation values ⟨ZΛ′⟩ are given by

⟨ZΛ′⟩ = Tr (ZΛ′ω) =
∑
Λ

Tr (cΛZΛ△Λ′) + 2−NTr (ZΛ′)

= 2NcΛ′ ,

as Tr (σz) = 0 and Tr (A⊗B) = Tr (A) Tr (B). Hence we have

cΛ =
⟨ZΛ⟩
2N

.

Note again that the expectation values ⟨ZΛ⟩ are fixed by the initial state.
What happens if we only fix the expectation value of local conserved quantities on some

subsystem Σ? Let ΓS be the index set that counts the different regions Λk inside Σ ⊆ Ω.
Then we get as total state with maximum entropy

σ =
∑

Λ⊆Σ,Λ ̸=∅

cSΛZΛ + cS∅ 1,

by the same calculation as above. As we require that ⟨ZΛ⟩ω = ⟨ZΛ⟩σ for all Λ ⊆ Σ, it
follows that cSΛ = cΛ for all Λ ⊆ Σ. The reductions of σ and ω to Σ are then

ωΣ = TrΩ/Σ

 ∑
Λ⊆Ω,Λ̸=∅

cΛZΛ

+ TrΩ/Σ (c∅1) ,

= 2|Ω/Σ|

 ∑
Λ⊆Σ,Λ̸=∅

cSΛZΛ + cS∅ 1


σΣ = 2|Ω/Σ|

 ∑
Λ⊆Σ,Λ̸=∅

cSΛZΛ + cS∅ 1

 ,
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where the relations Tr (σz) = 0 and Tr (A⊗B) = Tr (A) Tr (B) have been used. The
operators ZΛ and 1 are now, of course, only defined on the set Σ instead of Ω. So the two
states are the same.

With the results for the unrotated Hamiltonian at hand it is now possible to calculate
the maximum entropy for the rotated Hamiltonian. As discussed in the beginning of this
section this simply done by conjugating ω by U . Thus the state of maximum entropy for
the rotated Hamiltonian is

UωU† =
∑

Λ⊆Ω,Λ ̸=∅

c′ΛUZΛU
† + c∅1, (16)

where c′Λ = 2−N ⟨UZΛU
†⟩.

The difference to the unrotated case lies in the fact that the rotation by U induces
interactions between neighboring sites and therefore in general TrΛ2

(
UZΛ1ZΛ2U

†) ̸= 0,
even when Λ1 and Λ2 are disjoint.

Ultimately we are interested in the reduction of UωU† to some small subsystem. To
calculate the reduction it is necessary to study the unitary U more carefully. At first, we
can write out U more explicitly. Note that (XjXj+1)

2 = 1, it then follows, again by lemma
3, that

U =

N∏
j=1

exp (iτXjXj+1) =

N∏
j=1

(cos(τ)1+ i sin(τ)XjXj+1)

=
∑
Γ⊆Ω

|Γ| even
Γ ̸=∅

uΓXΓ + cos(τ)N1,

where uΓ are of the form ij sin(τ)j cos(τ)k and j, k depend on the region Γ with j + k =
N . Now consider one term UZΛU

† in eq. 16. We define again the union of a set of M
consecutive sites Λ = {k, . . . , k+M} with its boundary to be the set ∂Λ = {k− 1, . . . , k+
M + 1}. General sets are disjoint unions of sets of a number of consecutive sites. The
boundary set is then defined as the union of all the boundary sets of the disjoint subsets.
Furthermore we define the unitary matrices on sets Λ ̸= Ω

UΛ =
∏
j

j,j+1∈∂Λ

exp (iτXjXj+1) =
∑
Γ⊆∂Λ
|Γ| even

uΓXΓ,

where now the powers j, k in uΓ have to sum up to |Λ|+ 1. Then U can be written as

U = UΛUΩ/∂Λ

and as U†
ΛUΛ = UΛU

†
Λ = 1 we have

UZΛU
† = UΩ/∂ΛUΛZΛU

†
ΛU

†
Ω/∂Λ = UΛZΛU

†
Λ

=
∑
Γ⊆∂Λ
|Γ| even

∑
Γ′⊆∂Λ
|Γ′| even

uΓXΓZΛūΓ′XΓ′

=
∑
Γ⊆∂Λ
|Γ| even

∑
Γ′⊆∂Λ
|Γ′| even

uΓūΓ′XΓZΛXΓ′ . (17)
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4 FIRST MODEL 4.2 ETH and fermionic picture

Let us now observe what happens to the operators ZΛ and XΓZΛXΓ′ if we trace out
everything but a region Σ of our system. Recall that the Pauli-operators fulfill

σiσj = δi,j + i
∑
k

ϵi,j,kσk,

where ϵi,j,k is the Levi-Civita tensor. Also note that the Pauli-operators are traceless. This
implies that all the operators vanish in the case that Λ * Σ. If Λ ⊆ Σ there are two case:
∂Λ ⊆ Σ and ∂Λ ∩ (Ω/Σ) ̸= ∅. In the first case we get

TrΣ (XΓZΛXΓ′) = 2|Ω/Σ|XΓZΛXΓ′ ,

TrΣ (ZΛ) = 2|Ω/Σ|ZΛ,

where, of course, XΓ, XΓ′ , ZΛ are now only defined on Σ. We therefore have, in this case,

TrΣ
(
UΛZΛU

†
Λ

)
= 2|Ω/Σ|UΛZΛU

†
Λ. In the case ∂Λ∩ (Ω/Σ) ̸= ∅ the sum in eq. 17 reduces to

∑
Γ⊆Σ∩∂Λ
|Γ| even

∑
Γ′⊆Σ∩∂Λ
|Γ′| even

uΓūΓ′XΓZΛXΓ′ . (18)

It is therefore possible to write the reduced state of the thermal state as

σΣ = 2|Ω/Σ|

 ∑
∂Λ⊆Σ
Λ̸=∅

cΛUΛZΛU
†
Λ + c∅1

+ TrΣ (RΣ) ,

with
RΣ =

∑
Λ⊆Σ

∂Λ∩(Ω/Σ) ̸=∅

cΛ
∑

Γ⊆Σ∩∂Λ
|Γ| even

∑
Γ′⊆Σ∩∂Λ
|Γ′| even

uΓūΓ′XΓZΛXΓ′ .

The first term is the same state as we would have gotten if we had only fixed the expec-
tation values of all operators UZΛU

† with ∂Λ ⊆ Σ and calculated the maximum entropy
state. The second term is a residual term. The residual term only contains contributions
from conserved quantities that have support on the boundary of Σ. Therefore we have
shown that indeed only the expectation values of the conserved quantities on a subsystem
together with its boundary are needed to compute the equilibrium state of the subsystem.

Note that this result is technically mainly caused by the fact that the interactions are
given by tensor products of traceless operators, namely the Pauli operators, and the iden-
tity.

4.2 ETH and fermionic picture

The second purpose of the model is to check whether the Eigenstate Thermalization Hy-
pothesis holds for this model. To do this we will have to calculate reductions of eigenstates
of the Hamiltonian. In the case of free fermions this can easily be done as the reduced
state of a quasi free state is fully determined by its covariance matrix. The covariance
matrix of a reduced state is given by the subsystem’s part of the original covariance ma-
trix. For eigenstates of quasi free systems the covariance matrix is easy to calculate. As
shown by lemma 2 the covariance matrix of a Gibbs state is also easy to calculate. The
strategy to check whether the ETH holds will therefore be the following. First, the model
is transformed to a fermionic model using the Jordan-Wigner transformation, hoping that
it turns out to be a quasi free model. We will find out that it does turn out to be free.
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4.2 ETH and fermionic picture 4 FIRST MODEL

Then the covariance matrices of eigenstates are calculated. Finally, we see if it is possible
that eigenstates of similar energy have the same reduced states.

Performing the Jordan-Wigner transformation as discussed in section 3.2.2 yields

H 7→ H̃ =

N∑
j=1

λj

(
1− 2f†

j fj

)
(19)

=
N∑
j=1

λj2iω2j−1ω2j , (20)

V 7→ Ṽ =
N∑
j=1

iω2jω2j+1, (21)

where ωj denote the Majorana-operators. Note that the locality of the operators is pre-
served in this case.

Using lemma 3 and the commutation relation for Majorana-operators one can directly
compute the Hamiltonian of the rotated model to be

H̃ =

N∑
j=1

λj exp
(
iṼ τ

)
ω2j−1ω2j exp

(
−iṼ τ

)
(22)

= 2iλω⊤SΛS⊤ω, (23)

where Λ has the form (
A B
−B −A

)
(24)

and S⊤ is the orthogonal transformation that reorders the entries in ω in the following
way:

(ω1, ω2, . . . , ω2N−1, ω2N ) → (ω1, . . . , ω2N−1, ω2, . . . , ω2N ) .

The Matrices A and B are given by

A = α



0 1 0 · · · 0 −1

−1 0 1 0
. . . 0

0 −1 0
. . . 0

...
... 0

. . . 0 1 0

0
. . . 0 −1 0 1

1 0 · · · 0 −1 0



B = β1+ γ



0 0 1 0 · · · 0 1 0

0 0
. . . 0 0 1

1 0
. . .

. . .
. . . 0

0
. . .

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . . 0 1

1 0
. . .

. . . 0 0
0 1 0 · · · 0 1 0 0


,
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where α, β and γ are functions of τ with α(0) = γ(0) = 0 and β(0) = 1:

α (τ) = cos (τ) sin (τ)

β (τ) = cos (τ)2

γ (τ) = sin (τ)
2
.

Note that A = −A⊤, B = B⊤ and therefore Λ = −Λ⊤. This is necessary because H̃ has to
be Hermitian. We see that H̃ is quadratic in the Majorana-operators. Therefore the model
is indeed a quasi-free model.

4.2.1 Transformation of the covariance matrix

We have seen that the model is quasi free model in the fermionic picture. The next step is
to calculate the covariance matrices of eigenstates. In the calculation of the equilibrium
state of a subsystem in the spin picture, we saw that it was useful to first consider the
unrotated model and see how going over to the rotated model influences the results. As
the covariance matrices of eigenstates in the unrotated model are very easy to calculate,
it would be nice if this intuition carries over to the calculation of covariance matrices. We
will now see that it indeed does.

Recall that the covariance matrix γ of a fermionic system, described in Majorana-
operators, in a state ρ is defined as

γi,j = 2i⟨ωiωj⟩ − iδi,j ,

with ⟨ωiωj⟩ = Tr (ωiωjρ). Suppose we know the covariance matrix for a state ρ in the
unrotated system, for example an eigenstate. What is the covariance matrix of the corre-

sponding rotated state UρU†, where now U = exp
(
iṼ τ

)
? As the trace is invariant under

cyclic permutation in the argument we have Tr
(
ωiωjUρU †) = Tr

(
U†ωiωjUρ

)
. So instead

of looking at the rotated state we can observe how conjugation by U† acts on the opera-
tors ωiωj . By using lemma 3 and the fact that U is a product of commuting 2-local unitary
operators one then finds that the matrix elements γi,j transform as following when going
from ρ to UρU †:

γi,j →

 s2γi+1,j+1 − sc (γi,j+1 + γi+1,j) + c2γi,j if i, j both even
s2γi−1,j−1 + sc (γi−1,j + γi,j−1) + c2γi,j if i, j both odd
−s2γi−1,j+1 + sc (γi−1,j − γi,j+1) + c2γi,j if i odd and j even

, (25)

with the short-notation c = cos τ and s = sin τ . The case where i is even and j is odd
follows from γ = −γ⊤. If we are interested in the covariance matrices of eigenstates
of the rotated Hamiltonian, it therefore suffices to calculate that of the corresponding
eigenstate of the unrotated Hamiltonian and use this transformation.

4.2.2 Covariance matrix of eigenstates

The unrotated Hamiltonian is already diagonal in its “local” representation. Each spin is
uncorrelated from the others. Therefore the covariance matrix of an eigenstate,

|Ek⟩ =|k1, . . . , kN ⟩,

is simply given by

γk =
N⊕
j=1

(−1)kjJ2.
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Thus in this case γi,j = 0 if i and j are either both odd or both even. Note that the
transformation eq. 25 only superposes next-neighbor entries of γi,j in the matrix. It thereby
only induces correlations between next neighbors. The covariance matrix of the rotated
eigenstate U |Ek⟩⟨Ek| U† therefore only has non-zero entries on the two sidebands next
to the diagonal.

4.2.3 Eigenstate Thermalization Hypothesis

If the strong ETH holds in this model, eigenstates of the total system with similar energy
would have to look the same on all small enough subsystems. Recall that eigenstates of
a quasi free fermionic system are completely described by their covariance matrix. This
means that different eigenstates have to have different covariance matrices. The result
from the preceding section, which showed that the covariance of eigenstates only have
non-zero correlations between nearest neighbors, implies that the covariance matrices
of two different eigenstates already have to differ on subsystems of size two. Therefore
the ETH cannot hold for subsystems of size two. Note that in this case it was not even
necessary to calculate the local Gibbs state.

5 XX-model

The second model is the XX-model. The XX-model is a widely studied model in quantum
many-body physics. This is due to the fact that it can be solved fairly easily but still exhibits
non-trivial effects like a quantum phase transition. It is therefore interesting to see if the
ETH can hold in the model. Instead of showing analytically if the ETH can hold or not, we
will see this using numerical experiments.

In general, a system of N spins or fermions is difficult to simulate on a classical com-
puter because the dimension of the Hilbert-space grows exponentially with the number
of particles. Hermitian operators on the Hilbert-space of N spins are in general described
by 22N real numbers. Exact diagonalization is therefore not feasible in a situation where
N is much bigger then 10, at least not on a “normal” computer.

We will see, however, that the XX-model goes over to a free fermionic chain under
a Jordan-Wigner transformation. A free fermionic chain is completely described by the
coupling matrix h, which is only a real 2N × 2N matrix. Furthermore any Gibbs state
is completely described by its real 2N × 2N covariance matrix. Instead of matrices of
dimensions 2N × 2N we therefore only have to deal with matrices 2N × 2N when dealing
with quasi free systems. This makes numerical studies of quasi free systems feasible.

In section 3.1 the XX-model was introduced as a spin-model. We will now perform the
Jordan-Wigner transformation, calculate the normal-form of the corresponding coupling
matrix h and briefly discuss the criticality of the model. After that we will see how
to calculate the covariance matrices of Gibbs states and eigenstates directly. Then the
numerical experiments are described and finally the results are presented.

Under a Jordan-Wigner transformation the XX-model goes over to a free fermionic chain
(see section 3.2),

H =
1

2

N∑
i,j=1

(
f†
jAi,jfj − fiAi,jf

†
j + fiBi,jfj − f†

i Bi,jf
†
j

)
,

with B = 0 and

Ai,j =

{
λ if i = j
−1

2 if |i− j| = 1,

with periodic boundary conditions.
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5 XX-MODEL

If we define f =
(
f1, . . . , fN , f†

1 , . . . , f
†
N

)
we can write H as

H =
1

2
f⊤
(

0 −A
A 0

)
f. (26)

Let S again be the orthogonal transformation which reorders the entries of an vectors f
in the way (

f1, . . . , fN , f†
1 , . . . , f

†
N

)
→
(
f1, f

†
1 , . . . , fN , f†

N

)
and let W be the matrix

W =

N⊕
j=1

1√
2

(
1 1
i −i

)
.

Then we can write the vector of Majorana-operators as ω = WSf and accordingly f =
S⊤W †ω. Putting this into eq. 26 we get

H =
1

2
ω⊤W̄S

(
0 −A
A 0

)
S⊤W †ω.

Pulling out an i, we get back the usual form of a quasi free fermionic model in Majorana-
operators H = iω⊤hω with

h =
1

2i
W̄S

(
0 −A
A 0

)
S⊤W †.

The coupling matrix A is a real symmetric matrix, hence it can be diagonalized by an
orthogonal transformation U . Let D be the diagonal form of A, so A = UDU†. We can
then write H as

H =
1

2
ω⊤W̄S

(
0 −A
A 0

)
S⊤W †ω

=
1

2
ω⊤W̄S

(
0 −UDU⊤

UDU⊤ 0

)
S⊤W †ω

=
1

2
ω⊤W̄S (U ⊕ U)

(
0 −D
D 0

)(
U⊤ ⊕ U⊤)S⊤W †ω

=
1

2
ω⊤W̄S (U ⊕ U)S⊤S

(
0 −D
D 0

)
S⊤S

(
U⊤ ⊕ U⊤)S⊤W †ω. (27)

If we denote the diagonal entries of D with ϵ1, . . . , ϵN we get that

1

2
S

(
0 −D
D 0

)
S⊤ =

N⊕
j=1

−1

2
ϵj

(
0 1

−1 0

)
=

N⊕
j=1

−1

2
ϵjJ2 = hn.f.

is the normal-form of h.

Criticality of the model This model is interesting as it features a quantum phase transition
in the parameter λ. This can be seen in the following way. Writing out the Hamiltonian
in the original fermionic annihilation and creation operators instead of the Majorana-
operators yields,

H =
∑
j

λf†
j fj −

1

2

∑
j

(
f†
j fj+1 + h.c.

)
+ const.,
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where h.c. denotes the Hermitian conjugate of the preceding term and recall that we
chose periodic boundary conditions. If we define new fermionic annihilation operators

ηj =
1√
N

∑
k

fke
2π jk

N ,

the Hamiltonian becomes diagonal in these operators, i.e.

H =
∑
k

λkη
†
kηk + const.,

where the real numbers λk are given by

λk = λ− cos

(
2πk

N

)
.

For |λ| > 1 the numbers λk are either all positive or all negative. The ground state of the
model is then given by either the vacuum state (λ > 1) or by the state where all modes
are occupied (λ < 1). In the intermediate regime, where some of the λk are positive and
some of them are negative, the Hamiltonian has positive as well as negative eigenvalues.
The ground state is then given by the state where all modes with negative λk are occupied
and all the others are empty.

This behavior results in the effect that for |λ| > 1 the energy difference ∆E between
the ground state and the lowest excited eigenstate is finite even in the thermodynamic
limit N → ∞. For such gapped systems it can be proven, using Lieb-Robinson bounds, that
correlations in the ground state decay exponentially with the distance [28].

In the regime |λ| ≤ 1, on the other hand, ∆E vanishes in the thermodynamic limit,
which results in a critical phase with long-range interactions.

Covariance matrix of eigenstates and Gibbs state By lemma 2 the covariance matrix of
the Gibbs state in normal-form is given by

γn.f.
Gibbs =

N⊕
j=1

tanh

(
1

2
βϵj

)
J2.

As seen in the discussion of the previous model, the covariance matrix of an eigenstate
|Ek⟩ =|k1, . . . , kN ⟩, if H is given in normal-form, is simply

γn.f.
k =

N⊕
j=1

(−1)kjJ2.

To get the representation of the two matrices in the original Majorana-operators we just
need to transform like in eq. 27. This yields

γGibbs =
1

i
W̄S (U ⊕ U)S⊤γn.f.

GibbsS
(
U⊤ ⊕ U⊤)S⊤W † (28)

and analogously for γk . So all that is necessary to calculate is the normal form of the
coupling matrix hn.f. and the unitary transformation U . All the rest follows directly from
eq. 28 and lemma 2.

5.1 Numerical experiments regarding ETH

To investigate whether the ETH holds for the XX-model I have conducted different numer-
ical experiments, each in the critical regime with λ = 0.25. I only studied the subsystem
composed of the first two spins/sites in the chain. Note that if the ETH does not hold for
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subsystems of size 2 it cannot hold for subsystems that are bigger. Furthermore it does not
matter which two neighboring spins are considered, because the system is translationally
invariant.

Experiment 1 (Local inverse temperature vs. global energy) The first experiment studied
whether the local inverse temperature depends smoothly on the energy of the total sys-
tem. As discussed in section 2.2.1 this is necessary if the ETH can be considered as a
plausible explanation of thermalization. The experiment was done in the following way.
First a random eigenstate of the total system was chosen from the uniform distribution.
Then the energy of total system E as well as the energy of the subsystem ES was calcu-
lated using lemma 1. Then the covariance matrix γS

Gibbs of the Gibbs state of the subsystem
was calculated using only the upper left 4× 4 sub-matrix hS of h and β was chosen such
that ∣∣∣∣12Tr (h⊤

S γ
S
Gibbs

)
− ES

∣∣∣∣ ≤ 10−8.

Finally the resulting inverse temperature β was plotted exemplary over the energy E of
the total system in figure 1 (a-c) for n = 10, 40, 90. To analyse the results quantitatively
I furthermore computed the principal components of the inverse temperature in depen-
dence of the total energy. Then the standard-deviations σmax and σmin in direction of the
maximal and minimal variance, respectively, was calculated and the ratio r = σmin

σmax
was

plotted in figure 1 (d) for system sizes between n = 10 and n = 90. The ratio r can be
viewed as a measure for the ratio of the short and long axis of the ellipse enclosing the
cloud of datapoints. It is therefore a measure of how well the inverse temperature can be
approximated by a smooth function of the total energy.

Experiment 2 (Local inverse temperature vs. local energy) As a sanity check for the com-
putations in experiment 1 I also calculated the inverse temperature of the subsystem in
dependence of the energy of the subsystem. Figure 1(e) shows an example-plot for a system
size of n = 10. The results for larger systems are similar.

Experiment 3 (Eigenstate vs. local Gibbs state I) The second experiment directly checked
the ETH. First a random eigenstate was chosen from the uniform distribution and the
corresponding covariance matrix was calculated. Then the covariance matrix of the corre-
sponding local Gibbs state was calculated in the same way as in experiment 1. After that,
∆γ1,2 and ∆γ1,4, the absolute values of the differences of the entries (1,2) and (1,4) of both
covariance matrices, were calculated. Finally the results were sampled over 50 eigenstates
and the mean of ∆γ1,2 and ∆γ1,4 were plotted over subsystem sizes n = 5, . . . , 40 in fig-
ure 2(a). Note that γ1,2 is the expectation value of the local magnetization, i.e. γ1,2 = ⟨Z1⟩.

Experiment 4 (Eigenstate vs. local Gibbs state II) This experiment was almost a repeti-
tion of experiment 3. Instead of choosing the eigenstates from the complete uniform dis-
tribution the eigenstates were restricted to those that have energy sufficiently far away
from the mean. The reason is the following: When choosing eigenstates randomly from
the uniform distribution, the probability to chose a state with energy close to the mean
energy grows exponentially with the number of sites (cf. figure 1(a-c)). It is therefore
necessary to artificially choose states with energies sufficiently far away from the mean
to get more representative data. To do this, first 500 eigenstates were chosen from the
uniform distribution for every n and the mean ⟨E⟩ and the standard-deviation σ of their
energy was calculated. Then the experiment was restricted to be performed with eigen-
states that have energies outside the interval [⟨E⟩ − σ, ⟨E⟩+ σ]. The results are plotted in
figure 2(b).

25



5.1 Numerical experiments regarding ETH 5 XX-MODEL

β

E

n=10

-1.5

-1

-0.5

0

0.5

1

1.5

-6 -4 -2 0 2 4 6

(a)

β

E

n=40

-1.5

-1

-0.5

0

0.5

1

1.5

-20 -15 -10 -5 0 5 10 15 20

(b)

β

E

n=90

-1.5

-1

-0.5

0

0.5

1

1.5

-40 -30 -20 -10 0 10 20 30 40

(c)

r

n

0.01

0.1

1

10 20 30 40 50 70 90

(d)

β

ES

n=10

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(e)

Figure 1: (a-c) Experiment 1. The plots show the local inverse temperature β of the first two
spins in dependence of the energy of the total system E for system sizes n = 10, 40, 90.
(d) Ratio r = σmin

σmax
of the standard-deviation in direction of maximal and minimal variance

of the principal components of the inverse temperature in dependence of the total energy.
The quantities σmin and σmax are a measure for the length of the short and long axis,
respectively, of an ellipse enclosing the clouds of datapoints (cf. (a-c)). The green line is
given by a fit to a power-law with exponent ≈ −1.
(e) Experiment 2. The plot shows the local inverse temperature β of the first two spins in
dependence of the energy of the subsystem ES for system size n = 10.

Experiment 5 (Eigenstate vs. global Gibbs state) The last experiment studied a different
notion of thermalization and is also closely connected to the role of conserved quantities.
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Figure 2: (a) Experiment 3. Mean of ∆γ1,2 and ∆γ1,4 (for def. see text) for the covari-
ance matrices of an eigenstate and the local Gibbs state that has the same energy on the
first two spins. Each data point is a sample over 50 randomly chosen eigenstates. The
eigenstates were chosen from the uniform distribution. The error-bars are given by the
standard deviation.
(b) Repetition of (a), but restricted to eigenstates with energies outside the interval
[⟨E⟩ − σ, ⟨E⟩+ σ] (see text).

We know that if a subsystem of a large system equilibrates, its equilibrium state is given
by the reduction of the maximum entropy state of the total system, under the constraint
that the initial expectation values of all conserved quantities remain fixed. It is imagin-
able, however, that effectively only a small number of conserved quantities are important.
Particularly it might be the case that only the total energy is of importance. Then the
local system’s state would be given by the reduction of the Gibbs state of the total system.
To check if this is the case in the XX-model a very similar procedure as in the previous
experiments was used. The difference lies in the fact that the reduction of the randomly
chosen eigenstates was compared with the reduction of the global Gibbs state instead of
the local Gibbs state. Furthermore, instead of comparing γ1,2 and γ1,4 separately, ||∆γ||2,
the 2-norm of the difference of the local covariance matrices, was calculated. This was
done for system sizes n = 20, 30, 40, 55, 70, 85. To be able to compare the results, ||∆γ||2
was also computed for two randomly chosen eigenstates. In both cases 100 samples were
used for every n. The results are plotted in figure 3.

5.2 Discussion of the results

I will now discuss the results of the numerical experiments, beginning with experiment
1. The results of this experiment are plotted in figure 1(a-c). First note that due to the
fact that the spectrum of the system is centered around 0 it is possible to get positive as
well as negative energies on the subsystem. From figure 1 it is clear that the local inverse
temperature of the subsystem does not vary smoothly with the energy of the total system
for the system sizes considered. In fact, even for eigenstates of the total system with
(almost) the same energy, the temperature can be very different on the subsystem.

Comparing the plots for the three different system sizes n = 10, 40, 90 shows, however,
that the scattering gets smaller with bigger system size. This indicates that the dependence
of the local inverse temperature on the global energy might converge to a smooth curve for
very large n. This can be seen even more clearly in figure 1(d), which indicates that the ratio
r = σmin

σmax
converges in a power-law fashion to 0 for large n. Such a smooth variation of local

inverse temperature with the total energy is necessary if the ETH should be considered
as a plausible explanation for thermalization as discussed in section 2.2.1. Figures 1 (a-
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Figure 3: Experiment 5. Mean of ||∆γ||2 (for def. see text) for the local covariance matrices,
on the first two spins, of an eigenstate and the corresponding global Gibbs state (red)
or a second, randomly chosen, eigenstate (green). Each data point is a sample over 100
randomly chosen eigenstates. The eigenstates were chosen from the uniform distribution.
The green datapoints were all moved one unit to the right for visual clarity. The error-bars
are given by the standard deviation.

c) furthermore illustrate quite clearly the effect that randomly chosen eigenstates have
energy close to the mean with a probability that grows exponentially with the system
size.

Also note that the inverse temperature indeed varies smoothly with the local energy
(see figure 1(e)) already for a small system of size n = 10. This should, of course, be the
case because exp (−βH) is a smooth function of the inverse temperature.

Figures 2(a) and 2(b) show that the difference of the expectation value of the local
magnetization (matrix-entry γ1,2) computed from an eigenstate and the corresponding
Gibbs state decreases exponentially with the system size. It is therefore plausible to say
that the local magnetization thermalizes for single eigenstates. The same is true for the
matrix-entry γ1,4. The agreement of figures 2(a) and 2(b) furthermore indicates that the
results not only hold for eigenstates with energies very close to the mean.

The last experiment (see figure 3) shows that an eigenstate of the Hamiltonian of the
total system locally looks increasingly similar to the reduction of the global Gibbs state
with same energy when the total system gets larger. In fact, this convergence is also
roughly exponential in the system size. However, the same is true if one compares two
randomly chosen eigenstates, although the absolute value of ||∆γ||2 is on average higher
in this case. One has to be careful in interpreting this result, however, because choosing
two eigenstates randomly yields two eigenstates with energy close to the mean energy
with a probability that grows exponentially with the system size. If the ETH is true,
which the previous results indicate, then these eigenstates locally look like Gibbs states
with similar temperature and should therefore be locally very similar. A similar effect
would occur when the eigenstates were restricted to energies outside a certain interval
that encloses the mean energy. The only difference would lie in the fact that the randomly
chosen eigenstates would cluster at the edge of that intervall. It is therefore not clear if
the local similarity of an eigenstate and the corresponding Gibbs state is just a result of
this concentration of measure effect.

Concluding, the experiments indicate that, in the XX-model, thermalization indeed al-
ready occurs on the basis of eigenstates if the total system is very large.
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6 Conclusions
In this thesis I studied the problem of equilibration, thermalization and the role of con-
served quantities in two models.

The first model was an interaction-free spin chain with local magnetic fields. By conju-
gating it with a unitary operator, interactions between neighboring spins were introduced.
This model can be expected to thermalize from general arguments. I showed analytically
that the equilibrium expectation values of local observables on any subsystem S can be
computed by using the state that maximizes entropy subject to the constraint that the
expectation values of all local conserved quantities on S and its boundary agree with the
initial conditions. The main technical reason for this was, that the interaction was given
by tensor products of traceless Pauli operators. This result shows that the equilibrium
state of a small subsystem does not always depend on subsystems that are far away.

Furthermore by transforming the model into one of free fermions and using the property
that eigenstates of free fermionic systems are Gaussian, it was possible to show analytically
that the Eigenstate Thermalization Hypothesis cannot hold for subsystems of size ≥ 2.

The second model was the fermionic XX-model in the critical regime, with λ = 0.25. In
this case, numerical experiments were used instead of analytical methods. The fact that
the model is a free fermionic model made it possible to work with covariance matrices
instead of exact diagonalization techniques. This way numerical experiments for systems
up to system-sizes of 90 sites could be done. The results of the experiments indicate
that thermalization can indeed be viewed as already happening at the level of eigenstates
if the total system is very large. They therefore support the ETH. This is particularly
interesting as the result is a counter-example for the paradigm that integrable systems do
not thermalize and especially do not thermalize according to the ETH.

A natural question for further research is to ask whether it is possible to find general
arguments that explain when the ETH holds. One possible guide in this direction could
be to ask how well a state is actually defined if the expectation values of all local observ-
ables are given. Furthermore it would be interesting to ask if it is possible to find general
criteria that determine if all conserved quantities have to be considered in the process of
equilibration and thermalization for a given system.

I would like to particularly thank Christian Gogolin, Arnau Riera, Martin Kliesch and Niklas
Wilming for helpful discussions.
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